【AI底层逻辑】——篇章6:人工神经网络(深度学习算法)

本文介绍了深度学习中的人工神经网络结构,包括人工神经网络的层次和激活函数,特别讨论了Sigmoid和ReLU的区别。接着深入探讨了循环神经网络,解释了其模拟记忆的能力,尤其是长短时记忆网络(LSTM)如何解决传统RNN的梯度消失问题。文章还简要提及了强化学习的基本概念和马尔可夫决策过程在其中的作用。
摘要由CSDN通过智能技术生成

目录

引入

一、深度学习算法

1、人工神经网络结构

2、卷积神经网络

3、循环神经网络:模拟记忆

①循环神经网络

②长短时记忆网络(LSTM)

4、强化学习

①强化学习的控制论

②强化学习的反馈机制

③马尔可夫决策过程

④强化学习的重要地位

 往期精彩:


引入

任何一项技术的发展都不会一帆风顺,深度学习的发展也经历了“三起两落”!

①第一代神经网络——单层感知器(MP)模型,感知器模型实际就是将神经元模型中的激活函数作为符号函数,写成向量形式,即

评论 62
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柯宝最帅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值