2024年全国大学生数学建模C题论文

C  农作物的种植策略

问题 1 2024-2030 年农作物的最优种植方案

1.1 问题 1 的第一小问详细

该问题要求在假设未来农作物的预期销售量、种植成本、亩产量和销售价 格稳定的情况下,为乡村制定从 2024 年到 2030 年的农作物最优种植方案。特 别是要考虑当某种作物每季的总产量超过相应的预期销售量时,超过部分不能 正常销售,造成浪费。

目标:

通过合理分配地块和大棚的种植作物,使得乡村在 2024 年至 2030 年期间

的总收益最大化,同时满足以下约束条件:

•       各类作物不能在同一地块连续重茬种植,防止减产。

•       每三年内,必须在每块地种植一次豆类作物。

•       优化方案还需考虑田间管理的便利性,避免种植区域过于分散。

模型构建思路:

该问题可以通过线性规划整数规划模型来进行求解,具体步骤如下:

1.1. 数据处理与结果分析

•       数据预处理:使用 2023 年的种植和销售数据(见附件 2)作为

模型的基础输入数据,预处理不同作物的亩产量、种植成本、预期销售 量和价格等。

•       模型验证: 2024 年到 2030 年的不同年份运行模型,比较不 同年份的种植策略,并分析收益和种植面积的变化趋势。

1.2 决策变量的设定

•       xij(t)为变量,表示在第 t 年,地块 i 上种植作物 j  的面积(亩)。

•       i代表不同的地块编号,j 表不同的作物,t代表年份。

1.3 目标函数

目标是最大化农作物的总收益。对于每个作物 j  在第 t  的收益可以表 示为:

收益

 = min (

销售jt) × 销售量j

如果产量超过了预期销售量,超出的部分无法销售,导致浪费。 总收益的目标函数可以表示为:

max   

  

(min (xij(t) × 亩产量j  , 期销售量j ) × 销售价格j

t =2024 i = 1 j = 1

− xij(t) × 种植成本j )

其中:

xij(t):表示地块 i 在第 t 年种植作物 j 的面积 亩产量j :为作物 j 每亩的产量

预期销售量j :为作物 j 在第 t 年的最大销售量 销售价格j :为作物 j 的单价

种植成本j :为作物 j每亩的种植成本

1.4 约束条件

耕地面积限制 每块地的总种植面积不能超过其实际面积,即:

M

 地块面积i,   ∀t, ∀i

j = 1

作物种植条件: 平旱地、梯田和山坡地只能种植粮食作物,水浇地可 以种水稻或两季蔬菜,大棚可以种蔬菜和食用菌。

 若地块类型不适合种植作物 j

不重茬约束 同一地块不能在连续两年种植相同的作物,否则会减产:

xij(t) × xij(t)−1  = 0,         ∀i,j, t

豆类作物三年内种植一次的约束: 每三年内,每块地至少要种植一次

豆类作物:

T+2

t =T j豆类作物

其中,e 为一个正数,确保豆类作物在三年内至少有一定的种植面积。

种植区域不分散的约束: 需要避免每种作物的种植区域过于分散,可 以添加约束来限制同一种作物的种植面积在相邻的地块上:

 j |  δ,         ∀i, i  为相邻地块

其中,δ 为允许的种植面积差异。

1.5 模型求解方法

•       线性规划(Linear  Programming, LP若作物的种植面积是连 续变量,可以使用线性规划求解。

•       整数规划(Integer  Programming,  IP若种植面积需要离散 化(例如,精确到整数

线性规划是一种数学方法,用于在给定一组线性不等式或等式的约束条件下,找到最优解。在农业领域,线性规划可以帮助农民或农业生产者确定最有效的农作物种植策略,以最大化利润、最小化成本或达到其他目标。 线性规划问通常由以下几个部分组成: 1. 目标函数:表示优化目标,可以是最大化或最小化某个线性表达式。在农作物种植策略中,目标函数可能是最大化收益,即不同农作物的销售价格与种植面积的乘积之和。 2. 决策变量:代表要优化的量,通常是一个或多个变量。对于农作物种植策略,这可能是每种农作物的种植面积。 3. 约束条件:表示对决策变量的限制,这些限制可能是资源限制(如土地、资金、劳动力、水等)、市场需求、法律或政策约束等。 4. 非负性条件:通常要求决策变量的取值不小于零,因为农作物种植面积不能为负数。 线性规划的解决过程通常涉及以下步骤: 1. 明确目标:确定是要最大化收益还是最小化成本等。 2. 定义决策变量:例如,定义x1、x2、x3...分别代表不同农作物的种植面积。 3. 构建目标函数:根据决策变量构建一个线性表达式,表示目标。 4. 设立约束条件:根据实际情况,建立包括资源、市场需求等方面的约束条件。 5. 求解线性规划问:运用单纯形法或其他算法求解上述构建的线性规划模型。 在实际应用中,线性规划能够帮助农业生产者考虑各种因素,如作物轮作、土地利用、水资源分配等,通过计算来制定最合理的农作物种植计划。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值