一、什么是CEP
CEP(Complex Event Processing,复杂事件处理)
复杂事件:多条数据、多个事件(底层原理:状态)
Flink CEP是在Flink中实现的复杂事件处理库,允许在无休止的事件流中检测事件模式
- 目标:从有序的简单事件流中发现一些高阶特征
- 输入:一个或多个由简单事件构成的事件流
- 处理:识别简单事件之间的内在联系,多个符合一定规则的简单事件构成复杂事件
- 输出:满足规则的复杂事件
二、Pattern API
Pattern:模式,处理事件的规则
Pattern API:用于对输入流数据进行复杂事件规则定义,用来提取符合规则的事件序列
类型:
- 个体模式(Individual Patterns):每一个单独的模式定义
- 组合模式/模式序列(Combining Patterns):多个个体模式的组合
- 模式组(Groups of Patterns):将一个模式序列作为条件嵌套在个体模式里
三、个体模式
1)单例模式(singleton)
只接收一个事件
条件(Condition):
- 简单条件(Simple Condition):通过.where()对事件中的字段进行判断筛选,决定是否接受
- 组合条件(Combining Condition):合并简单条件,.or()
- 终止条件(Stop Condition):.until(),如果使用了 oneOrMore 或者 oneOrMore.optional,建议使用 .until() 作为终止条件,以便清理状态
- 迭代条件(Iterative Condition):.where(new IterativeCondition<Event>() {}),能够对模式之前所有接收的事件进行处理
2)循环模式(looping)
接收多个事件,可以在一个个体模式后追加量词指定循环次数
四、模式序列
1)严格近邻(Strict Contiguity)
所有事件按照严格的顺序出现,中间没有任何不匹配的事件, .next() 指定
例如对于模式”a next b”,事件序列 [a, c, b1, b2] 没有匹配
2)宽松近邻( Relaxed Contiguity )
允许中间出现不匹配的事件 ,.followedBy() 指定
例如对于模式”a followedBy b”,事件序列 [a, c, b1, b2] 匹配为 {a, b1}
3)非确定性宽松近邻( Non-Deterministic Relaxed Contiguity )
进一步放宽条件,之前已经匹配过的事件也可以再次使用(不能将开始事件从状态中删除),.followedByAny() 指定
例如对于模式”a followedByAny b”,事件序列 [a, c, b1, b2] 匹配为 {a, b1},{a, b2}
4)其他(不希望出现某种近邻关系)
.notNext() —— 不想让某个事件严格紧邻前一个事件发生
.notFollowedBy() —— 不想让某个事件在两个事件之间发生
注意:
- 所有模式序列必须以 .begin() 开始
- 模式序列不能以 .notFollowedBy() 结束(无意义)
- “not” 类型的模式不能被 optional 所修饰
- 可以为模式指定时间约束,用来要求在多长时间内匹配有效,next.within(Time.seconds(n)) 超时事件
- 可操作事件类型:成功事件、超时事件,不可获取事件类型:失败事件
五、匹配事件的提取
模式的检测:指定要查找的模式序列后,就可以将其应用于输入流以检测潜在匹配
调用 CEP.pattern(),给定输入流和模式,就能得到一个 PatternStream
创建 PatternStream 后,就可以应用 select 或者 flatselect 方法,从检测到的事件序列中提取事件
select() 以一个 Map<String,List <IN>> 来接收匹配到的事件序列,其中 String类型的key就是每个模式的名称,而value就是所有接收到的事件的List类型(一个个体模式中可能包含多个事件)
六、超时事件的提取-->侧流OutputTag
当一个模式通过 within 关键字定义了检测窗口时间时,部分事件序列可能因为超过窗口长度而被丢弃,为了能够处理这些超时的部分匹配,select 和 flatSelect API 调用允许指定超时处理程序
超时处理程序会接收到目前为止由模式匹配到的所有事件,由一个 OutputTag 定义接收到的超时事件序列