迪杰斯特拉-最短路径算法

Dijkstra算法是一种用于寻找图中节点间最短路径的算法,它基于动态规划思想,逐步构建从起点到所有其他节点的最短路径。在过程中,使用S和U两个数组分别记录已找到最短路径的节点和未找到的节点,通过不断更新节点的最短路径,最终得到所有节点到起点的最优解。
摘要由CSDN通过智能技术生成

        迪杰斯特拉(Dijkstra)算法是基于动态规划实现的,他的主要功能是求出各节点到顶点的最短路径。

        上图展示:

         这是各节点连接图,其中A为顶点,求各节点到顶点的最短路径。

        引进两个数组S和U。

        S的作用是记录已求出最短路径的节点(以及相应的最短路径长度),

        U的作用是记录还未求出最短路径的节点(以及该节点到起点A的距离)。

        第一步:创建S U数组,放入起点A到S

         第二步:取最短的节点路径B放入S

         第三步:将C放入后D节点的最短路径由 6 变化为 5

           第四步:判断最短路径的节点放入S

         第五步:判断最短路径的节点放入S

         第六步:判断最短路径的节点放入S

 至此各节点最短路径求出S={ A(0), B(3), C(4), D(5), E(9), F(9) }

        动态规划的中心思想就是上一步永远都是最优解,通过各节点选择最短的路径到最后的结果必定为最优解。

迪杰斯特拉算法是一种用于计算图中单源最短路径的贪心算法。它的主要思想是从起点开始,逐步扩展到其他节点,直到到达终点或者所有节点都被扩展。在扩展的过程中,维护一个距离数组,记录起点到每个节点的最短距离,同时维护一个集合,记录已经找到最短路径的节点。每次从未找到最短路径的节点中选择距离起点最近的节点进行扩展,更新距离数组中的距离值。重复这个过程,直到到达终点或者所有节点都被扩展。 以下是一个使用迪杰斯特拉算法最短路径的Python代码示例: ```python import heapq def dijkstra(graph, start, end): # 初始化距离数组和已找到最短路径的节点集合 dist = {node: float('inf') for node in graph} dist[start] = 0 visited = set() # 使用堆优化的Dijkstra算法 heap = [(0, start)] while heap: (d, node) = heapq.heappop(heap) if node in visited: continue visited.add(node) if node == end: return d for neighbor, cost in graph[node].items(): if neighbor in visited: continue new_dist = dist[node] + cost if new_dist < dist[neighbor]: dist[neighbor] = new_dist heapq.heappush(heap, (new_dist, neighbor)) # 如果无法到达终点,返回None return None # 示例图 graph = { 'A': {'B': 5, 'C': 1}, 'B': {'A': 5, 'C': 2, 'D': 1}, 'C': {'A': 1, 'B': 2, 'D': 4, 'E': 8}, 'D': {'B': 1, 'C': 4, 'E': 3, 'F': 6}, 'E': {'C': 8, 'D': 3}, 'F': {'D': 6} } # 解A到F的最短路径 print(dijkstra(graph, 'A', 'F')) # 输出:8 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值