【数据结构】图解:迪杰斯特拉算法(Dijkstra)最短路径

文章通过两个例题详细阐述了迪杰斯特拉算法的应用,首先介绍了算法的基本步骤,即从起点开始逐步找到最短路径,不断更新顶点间的最短距离。在例题中,分析了A点到各个顶点的最短路径,强调了路径的构建和距离值的修正过程。

目录

一、方法描述

二、例题一

 ​编辑

三、例题二

 有图如上,用迪杰斯特拉算法求顶点A到其余各顶点的最短路径,请问1.第一步求出的最短路径是A到C的最短路径2.第二步求出的是顶点A到顶点B/F的最短路径3.顶点A到D的最短路径长度是__25___ (填数字)4.顶点A到顶点F的最短路径,是通过顶点_C_到达的5.最后一步求出的是顶点A到顶点_E_ 的最短路径


一、方法描述

求解从某一顶点出发到其它各顶点的最短路径。(假设所有边的权都大于等于零)

路径长度递增的次序逐个产生最短路径:

从集合V-U中找出V0到其距离最短的顶点,将其加入集合U;

修正V0到集合中V-U中各顶点的距离值

即对第(1)步选取的顶点,若其作为中间顶点,使V0到集合中V-U中顶点的距离值比原来的距离值更小,则替换旧距离值;

重复(1)、(2)步,直到找到V0到所有顶点的最小距离

边(v0, vi) 的权:距离值

无边相连距离值:


二、例题一

 

三、例题二

 有图如上,用迪杰斯特拉算法求顶点A到其余各顶点的最短路径,请问
1.第一步求出的最短路径是A到C的最短路径
2.第二步求出的是顶点A到顶点B/F的最短路径
3.顶点A到D的最短路径长度是__25___ (填数字)
4.顶点A到顶点F的最短路径,是通过顶点_C_到达的
5.最后一步求出的是顶点A到顶点_E_ 的最短路径

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值