给你一个大小为 m x n 的矩阵 board 表示甲板,其中,每个单元格可以是一艘战舰 'X' 或者是一个空位 '.' ,返回在甲板 board 上放置的 战舰 的数量。
战舰 只能水平或者垂直放置在 board 上。换句话说,战舰只能按 1 x k(1 行,k 列)或 k x 1(k 行,1 列)的形状建造,其中 k 可以是任意大小。两艘战舰之间至少有一个水平或垂直的空位分隔 (即没有相邻的战舰)。
来源:力扣(LeetCode)
进阶:你可以实现一次扫描算法,并只使用 O(1)
额外空间,并且不修改 board
的值来解决这个问题吗?
这道题本身不是很难,用遍历扫描可以做出来,进阶在于一次扫描算法,且O(1)的额外空间,一次扫描算法指一套for循环拿下他,这个时候就把先X变.的思维PASS掉了,这个时候,只需要进行遍历出现X的横纵坐标,即可求解.O(1)代表需要用一维数组遍历,二维同时遍历复杂度会编程O(m*n)
class Solution {
public int countBattleships(char[][] board) {
int row=board.length;
int col=board[0].length;
int ans=0;
for(int i=0;i<row;++i){
for(int j=0;j<col;++j){
if(board[i][j]=='X'){
if( i>0&&board[i-1][j]=='X'){
continue; //如果横坐标加一出现X,直接跳出循环
}
if( j>0&&board[i][j-1]=='X'){
continue;
}ans++;//如果不跳出则加一成立
}
}}
return ans;
}
}
时间复杂度O(1),空间复杂度O(1),成立