定义
dp[i]: 爬到第i层楼梯,有dp[i]种方法
方法引入
有5个台阶
第一次爬:
i)爬1阶,现还剩4阶,在4阶的情况下又有两种方法
ii)爬2阶,现还剩3阶,在3阶的情况下又有两种方法
第一次爬有两种方法。即在有5个台阶的情况下,可以选择爬1阶,并加上爬其余4阶的方法;或者选择爬2阶,并加上爬其余3阶的方法。可得dp(5) = dp(4) + dp(3)
对于有4个台阶和3个台阶想法同理,一直拆解直至只有2个台阶或者一个台阶。
思路
爬楼梯的两种办法:每次一阶或两阶
对于n个楼梯的爬楼方法 == 第一次爬一阶的方法数 + 第一次爬两阶的方法数,
对于第一次爬一阶的方法数,即为爬n-1个楼梯的方法数。第一次爬两阶的方法数同理。
因此从计算爬n个楼梯的方法,到计算n-1,n-2;计算爬n-1个楼梯,需要计算n-2,n-3…
可得出递归方程为dp[i] = dp[i-1] + dp[i-2];
最后,将值放入数组储存,对于所求值再做相应返回
AC代码
class Solution {
public:
int climbStairs(int n) {
vector<int> arr;
arr.push_back(1);
arr.push_back(2);
for(int i = 3; i <= n; i++)
arr.push_back(arr[i-2] + arr[i-3]);
return arr[n-1];
}
};
注意 arr是从0开始的
arr[0]表示爬第一个台阶的方法,arr[1]表示爬第二个台阶的方法
arr[i-1]表示爬地i个台阶的方法
更好的AC代码
//要注意n=1的情况,不能有arr[2]
class Solution {
public:
int climbStairs(int n) {
if(n <= 1)
return n;
int arr[n+1];
arr[1] = 1;
arr[2] = 2;
for(int i = 3; i <= n; i++)
arr[i] = arr[i-1] + arr[i-2];
return arr[n];
}
};