2021-10-29 leetcode 动态规划 70.爬楼梯 c++

请添加图片描述
定义
dp[i]: 爬到第i层楼梯,有dp[i]种方法
方法引入
有5个台阶
第一次爬:
i)爬1阶,现还剩4阶,在4阶的情况下又有两种方法
ii)爬2阶,现还剩3阶,在3阶的情况下又有两种方法
第一次爬有两种方法。即在有5个台阶的情况下,可以选择爬1阶,并加上爬其余4阶的方法;或者选择爬2阶,并加上爬其余3阶的方法。可得dp(5) = dp(4) + dp(3)
对于有4个台阶和3个台阶想法同理,一直拆解直至只有2个台阶或者一个台阶。
请添加图片描述

思路
爬楼梯的两种办法:每次一阶或两阶
对于n个楼梯的爬楼方法 == 第一次爬一阶的方法数 + 第一次爬两阶的方法数,
对于第一次爬一阶的方法数,即为爬n-1个楼梯的方法数。第一次爬两阶的方法数同理。
因此从计算爬n个楼梯的方法,到计算n-1,n-2;计算爬n-1个楼梯,需要计算n-2,n-3…
可得出递归方程为dp[i] = dp[i-1] + dp[i-2];
请添加图片描述
最后,将值放入数组储存,对于所求值再做相应返回

AC代码

class Solution {
public:
    int climbStairs(int n) {
        vector<int> arr;
        arr.push_back(1);
        arr.push_back(2);
        for(int i = 3; i <= n; i++) 
            arr.push_back(arr[i-2] + arr[i-3]);
        return arr[n-1];
    }
};

注意 arr是从0开始的
arr[0]表示爬第一个台阶的方法,arr[1]表示爬第二个台阶的方法
arr[i-1]表示爬地i个台阶的方法

更好的AC代码
//要注意n=1的情况,不能有arr[2]

class Solution {
public:
    int climbStairs(int n) {
        if(n <= 1)
            return n;
        int arr[n+1];
        arr[1] = 1;
        arr[2] = 2;
        for(int i = 3; i <= n; i++) 
            arr[i] = arr[i-1] + arr[i-2];
        return arr[n];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

聪明的Levi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值