多源数据的融合发展现状与趋势(二)——全色、多光谱、高光谱图像融合

现有的空谱融合对象主要是全色、多光谱与高光谱图像。文章介绍了不同图像组合的融合方法,如全色与多光谱图像融合有空间信息注入法等。同时指出空谱融合虽发展多年,但仍存在配准误差、结构失真、性能极限及算法应用结合等技术难题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        现有的空谱融合对象主要是全色图像与多光谱图像、全色图像与高光谱图像、多光谱图像与高光谱图像。从波段数量来说,全色图像与多光谱或高光谱图像的融合属于“一对多”的融合, 多光谱图像与高光谱图像的融合属于“多对多” 的融合。在图像融合之前,一般都要对图像进行 几何校正、正射校正等预处理,再对两幅待融合图像进行配准。

一、全色图像与多光谱图像融合

1、空间信息注入法

        这类方法通过空间变换、多尺度分析等手段提取高空间分辨率全色图像的空间信息,并将提取出来的空间信息尽可能无损的注入到低空间分辨率的多光谱图像中。

        优势:能够较好的保留光谱信息;

        缺点:由于提取的空间信息仅包含特定谱段范围内的空间结构,与低空间分辨率图像的空间

结构并不完全匹配,因此容易产生空间结构失真。

2、光谱信息注入法

        这类方法通过线性或者非线性的图像变换将高光谱分辨率的图像变换 到新的投影空间,分解为光谱成分和空间成分,并用全色图像去替换其空间成分,再经过逆变换获得融合图像。

        优势:能较好的保留空间信息

        缺点:光谱信息会产生一定的失真。

3、空谱采样建模法

        核心思想是将融合问题看作是一个逆向重建问题,通过建立源图像与融合结果之间的

关系模型,优化求解得到融合结果。

        优点:模型严谨,能够更好的保持图像的空间与光谱信息。此外,为进一步优化融合效果,在融合过程中可引入概率统计和先验约束。

        缺点:模型的求解会更加复杂。

二、全色与高光谱的融合

        由于高光谱图像空间分辨率很低,像元之间会存在混淆,多采用模型优化求解的方法来解决

三、多光谱与高光谱的融合

1、基于全色锐化的方法

        将多光谱与全色融合 的方法扩展应用在多光谱与高光谱图像的融合中。将高光谱图像的波段分组,通过传统的全色锐化方法对每个波段小组进行融合或者将高光谱波段与多光谱的波段建立分组关系,有效地将一些经典多尺度分析的方法应用于多光谱与高光谱图像的融合。

2、基于成像模型的方法

        利用了光谱分解原理,在传感器特性的约束或先验下,分别从高光谱图像和多光谱图像中获取端元信息和高分辨率丰度矩阵,来重建融合后图像,其主要的性能影响因素在于光谱基的维度和矩阵系数的估计。

3、基于深度网络的方法。

         将低分辨率图像作为深度网络的输入,通过学习低、高分辨率图像之间端到端的映射,输出高分辨率的图像。这类融合方法的 性能提升点在于构造更加合理的损失函数、处理图像残差和使用更深层次的框架结构。

        全色、多光谱和高光谱图像都是光学传感器获取的图像,它们之间的主要区别在于光谱分辨 率和空间分辨率的不同,空谱融合的目的是提升图像的光谱和空间分辨率。虽然空谱融合的研究已经发展多年,但仍存在着诸多技术难题亟待解决。

(1) 当空谱融合的图像是不同卫星获取的数据时,源图像之间的配准误差会对融合性能产生较大影响,尤其是全色图像与高光谱图像、多光谱图像与高光谱图像的融合,现有成像平台无法同时获取不同分辨率的多光谱与高光谱图像,这类图像的配准难度更大,是空谱融合亟需解决的难题。

(2) 不同成像手段光谱响应区间不一致时,图像融合过程中易产生空间和光谱结构失真,尤其是全色图像与高光谱图像的融合,由于全色图像与高光谱图像的光谱响应区间存在很大差异,融合过程中往往难以重构出真实的高分辨率空间信息。

(3) 不同成像手段间的空间分辨率和光谱分辨率差异越大,空间与光谱信息的压缩比例就越大。这说明多分辨率图像融合存在性能极限,当图像空间分辨率的比值超出某个范围时,现有方法往往难以重构出高质量的高分辨率高光谱图像。

(3) 全色、多光谱和高光谱图像的融合研究是领域内的热点,但如何将图像融合算法与实际应用问题相结合仍存在诸多问题。从应用的角度改进融合算法的性能和效率,增加融合算法的实用性,是多源遥感图像空谱融合的挑战难题,也是其未来的发展趋势。

原文:

李树涛,李聪妤,康旭东 .2021. 多源遥感图像融合发展现状与未来展望 . 遥感学报, 25
1 ): 148-166
源图像信息融合技术广泛应用于军事、计算机视觉、医疗诊断及遥感应用等领域。 论文从像元、特征和决策融合三个方面研究了源图像融合技术,提出了一些新的分析处 理方法。 像元级图像融合技术的主要研究目的是获得一幅视觉增强的图像。本论文首先研究了 一般意义下单纯面向视觉增强的源图像融合方法,提出了一种基于统计融合模型的分 辨融合方法,给出了一般意义下的统计融合模型,通过引入传感器噪声项,有效地抑制了 传感器噪声对图像融合的影响。然后在多光谱图像融合中,提出了一种新的融合方法,将 相关约束进一步引入到统计融合模型中。这个方法充分增强了相关的空间信息,同时又有 效抑制了光谱失真。 特征组合、分类等是现有文献中特征级图像融合的主要研究内容。论文提出了特征级 融合的新思想,即在图像特征提取过程中利用源图像的信息融合。基于这个思想,提出 了一种融合源图像边缘信息的直线提取算法,把边缘的相位信息作为融合要素,通过融 合规则组合源图像中的不同特性。算法可以提取出仅利用单一或部分图像不能获得的直 线特征。论文进一步把道路的直线特征光谱特征相结合,发展了一种从遥感多光谱图像 提取道路的算法。 决策级图像融合技术具有广泛的应用范围。Dempster-Shafer (D-S)证据理论是决 策融合的主要方法之一,但典型的D-S理论不大适应高冲突证据组合。论文提出了一种基 于预处理模式的新方法,在利用Dempster组合规则进行证据组合之前,将冲突焦元的基 本概率赋值部分转移到焦元并集,采用证据之间的冲突额度来确定证据组合顺序。由于预 方法将冲突化解为不确定的知识表示,D-S理论可以处理冲突证据的组合问题。论文进一 步将改进方法应用于高光谱图像分类,发展了一种基于D-S理论的高光谱图像分类方法, 提供了比基于典型D-S理论方法更好的结果。 论文提出的所有算法均应用于真实源图像数据,实验结果显示了算法的有效性。 关键词:图像融合分辨分析,多光谱,特征提取,直线提取,道路提取,D-S证 据理论,高光谱,图像分类,目标识别
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

日益崛起的小羊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值