深度学习中卷积层(Conv)、BN层(Batch Normalization)和 ReLU层(Rectified Linear Unit)的详细介绍

一、卷积层(Conv)

  1. 定义

    • 卷积层是深度学习中卷积神经网络(CNN)的核心组成部分。它通过对输入数据(如图像)进行卷积操作来提取特征。卷积操作是用一个卷积核(也称为滤波器)在输入数据上滑动,计算卷积核与输入数据局部区域的点积。

    • 例如,对于一个图像输入,卷积核可以看作是一个小型的窗口,它在图像上按照一定的步长(stride)移动,每次移动到一个位置就和该位置对应的像素值进行乘积求和操作,得到一个输出值,这些输出值构成了卷积后的特征图。

  2. 参数说明

    • 卷积核大小(Kernel size):这是卷积核的尺寸,通常是一个正方形,如 3×3、5×5 等。较小的卷积核可以捕捉局部特征,较大的卷积核可以捕捉更大范围的特征。

    • 步长(Stride):卷积核在输入数据上滑动的步长。如果步长为 1,卷积核每次移动一个像素;如果步长为 2,卷积核每次移动两个像素,这会影响输出特征图的大小。

    • 填充(Padding):为了控制输出特征图的大小,可以在输入数据的边界添加填充。常见的填充方式有“valid”(不添加填充)和“same”(添加足够的填充使得输出特征

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HXQ_晴天

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值