快速搭一个Conv+BN+ReLU

1.导入各种包

import numpy as np
from keras import layers
from keras.layers import Input, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D
from keras.layers import AveragePooling2D, MaxPooling2D, Dropout, GlobalMaxPooling2D, GlobalAveragePooling2D
from keras.models import Model

2.Conv+BN+ReLU

X = Conv2D(32, (7, 7), strides = (1, 1),padding = 'same' , name = 'conv0')(X)
X = BatchNormalization(axis = 3, name = 'bn0')(X)
X = Activation('relu')(X)

3.封装为函数

def model(input_shape):
	"""
	模型大纲
	"""
    #定义一个tensor的placeholder,维度为input_shape
    X_input = Input(input_shape)
    
    #使用0填充:X_input的周围填充0
    X = ZeroPadding2D((3,3))(X_input)
    
    # 对X使用 CONV -> BN -> RELU 块
    X = Conv2D(32, (7, 7), strides = (1, 1), name = 'conv0')(X)
    X = BatchNormalization(axis = 3, name = 'bn0')(X)
    X = Activation('relu')(X)
    
    #最大值池化层
    X = MaxPooling2D((2,2),name="max_pool")(X)
    
    #降维,矩阵转化为向量 + 全连接层
    X = Flatten()(X)
    X = Dense(1, activation='sigmoid', name='fc')(X)
    
    #创建模型,讲话创建一个模型的实体,我们可以用它来训练、测试。
    model = Model(inputs = X_input, outputs = X, name='HappyModel')
    
    return model

参考来源

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值