ENDC优先选网流程介绍

本文详细介绍了ENDC优先选网流程,以确保终端优先注册到5GNR网络,从而提高数据吞吐量。通过ENDC优先搜索功能开关,网络配置的重选优先级调整,以及在ENDC Handover时的策略控制,实现终端在ENDC网络中的驻留优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前面文档介绍过重定向和CSFB两种特殊场景回到ENDC网络选网方式。

重定向和CSFB返回场景优先ENDC选网介绍_我想我思的博客-CSDN博客

本文介绍ENDC优先选网流程,目的是为了让终端优选注册到5GNR,提升吞吐量。

  • ENDC优先搜索feature开关

SBP_ENDC_PREFER_SEARCH:1

SBP_ENDC_PREFER_SEARCH_IN_FR :1

  • 确认网络支持ENDC

[NW->MS]SIB2(EARFCN[1300],PCI[278]) //UpperLayerIndication-r15=true

MSG_ID_L4CRAC_REG_STATE_IND //endc_sib_status=ENDC_SIB_STATUS_SUPPORT

  • 改变重选优先级

网络配置小区重选优先级,通过SIB5消息发送到终端。终端ENDC cell(1300)的优先级(cellReselectionPriority=4),低于服务小区41332的优先级(cellReselectionPriority=5)。

[NW->MS]SIB3(EARFCN[41332],PCI[220]) //cellReselectionPriority = 5

<
<think>好的,用户需要关于A*算法的流程图、图解以及工作原理的详细说明。首先,我需要回顾A*算法的基本概念,确保自己理解正确。根据引用内容,A*算法结合了Dijkstra算法和启发式函数,用于在图中寻找最短路径。用户提到的流程图和图解可能需要分步骤展示算法流程,包括如何择节点、计算代价等。 首先,我应该先解释A*算法的工作原理,引用提到的内容中提到启发式函数(如曼哈顿距离)和节点评估的F=G+H是关键点。需要详细说明每个符号的意义,比如G是从起点到当前节点的实际成本,H是到终点的预估成本,F是总和。同时,需要提到Open List和Close List的作用,以及如何扩展节点。 接下来,流程图的结构可能需要从初始化开始,逐步展示择节点、生成子节点、计算F值、更新列表等步骤。结合引用中的例子,比如检查Open List中的节点,择F最小的,处理相邻节点,判断是否终点等步骤,可能需要用流程图中的不同形状(如菱形判断框)来表示条件判断。 用户可能需要流程图来教学或理解算法流程,因此需要确保步骤清晰,逻辑正确。同时,引用中提到A*算法如何通过启发式函数避免无用计算,这点在流程图中可能需要体现,比如在计算H值时忽略障碍物,确保预估的合理性。 另外,用户提供的引用中有关于曼哈顿距离的具体计算方法,应该在解释H值时举例说明,比如坐标差的绝对值之和。同时,需要提到回溯路径的过程,这在流程图结束时需要展示如何从终点回溯到起点。 最后,需要确认流程图是否包含循环结构,即重复择节点直到找到终点或Open List为空。这部分在流程图中应以循环箭头表示,确保逻辑完整。同时,注意处理障碍物的情况,即某些节点不可通过,需要在生成子节点时排除,这在流程图中可能需要条件判断。 总结来说,回答需要分步骤解释A*算法的工作原理,并配以流程图的关键步骤,同时结合引用中的信息,如启发函数的作用、Open/Close List的管理等,确保用户能够通过图解和文字理解整个算法流程。</think>### A*算法工作原理及流程图解 #### 一、核心原理 A*算法通过以下公式评估路径成本: $$ F(n) = G(n) + H(n) $$ - **$G(n)$**:从起点到当前节点的实际移动成本(例如格中横向/纵向移动一格成本为10,斜向为14)[^3] - **$H(n)$**:启发函数估算的当前节点到终点的预测成本(常用曼哈顿距离:$H(n) = |x_n - x_{end}| + |y_n - y_{end}|$)[^2] - **$F(n)$**:总成本,用于优先级排序 #### 二、流程图关键步骤 ```mermaid graph TD A[初始化Open List和Close List] --> B[将起点加入Open List] B --> C{Open List是否为空?} C --是--> D[路径不存在] C --否--> E[择Open List中F值最小的节点N] E --> F[将N移入Close List] F --> G{N是否为终点?} G --是--> H[回溯生成路径] G --否--> I[生成N的相邻子节点] I --> J{子节点是否在Close List或不可通行?} J --是--> K[跳过该节点] J --否--> L{是否在Open List?} L --否--> M[加入Open List,计算FGH值] L --是--> N{新路径成本更低?} N --是--> O[更新父节点和FGH值] O --> C M --> C ``` #### 三、图解说明 1. **初始化阶段** - Open List存储待检查节点(起点初始放入) - Close List存储已处理节点 2. **节点择策略** 每次从Open List择$F$值最小的节点(若$F$相同则$H$更小的),确保向目标方向优先搜索[^3] 3. **子节点生成规则** 四邻域/八邻域扩展时,需排除障碍物节点(例如墙体)和已处理的Close List节点[^2] 4. **回溯路径方法** 到达终点后,通过父节点指针反向追溯至起点形成完整路径: $$ 终点 \leftarrow 父节点_1 \leftarrow 父节点_2 \leftarrow ... \leftarrow 起点 $$ #### 四、性能优化特点 - **启发式引导**:相比Dijkstra算法的盲目搜索,A*通过$H(n)$避免计算无关区域[^1] - **动态更新机制**:若发现更优路径,会更新节点的父节点和$G$值[^3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我想我思

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值