近世代数--正规子群--群、同态核、同态象的大小关系

这篇博客介绍了近世代数中关于正规子群的基础概念,特别是群同态的核(Kerφ)和像(Imφ)的大小关系。博主通过证明φˉ:Gˉ→Imφ是一个双射,阐述了拉格朗日定理的应用,即∣G∣=∣Kerφ∣∣Imφ∣,旨在帮助初学者理解和记忆这一重要定理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近世代数--正规子群--群、同态核、同态象的大小关系

博主是初学近世代数(群环域),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。
我整理成一个系列:近世代数,方便检索。

这里是正规子群的一点基础概念

∣ G ∣ = ∣ K e r φ ∣ ∣ I m φ ∣ |G|=|Ker\varphi||Im\varphi| G=KerφImφ

G , G ′ G,G' G,G是两个群, φ : G → G ′ \varphi:G\rightarrow G' φ:GG是一个群同态,设 G ˉ \bar{G} Gˉ N = K e r φ N=Ker\varphi N=Kerφ的所有陪集的集合,则 φ ˉ : G ˉ → I m φ , φ ( a N ) = I m ( a ) \bar\varphi:\bar{G}\rightarrow Im\varphi,\varphi(aN)=Im(a) φˉ:GˉImφ,φ(aN)=Im(a)是一个双射。

证明:

  • 构造映射: φ ˉ : G ˉ → I m φ , φ ˉ ( a N ) = φ ( a ) \bar\varphi:\bar{G}\rightarrow Im\varphi,\bar{\varphi}(aN)=\varphi(a) φˉ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值