近世代数--正规子群--群、同态核、同态象的大小关系
博主是初学近世代数(群环域),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。
我整理成一个系列:近世代数,方便检索。
这里是正规子群的一点基础概念。
∣ G ∣ = ∣ K e r φ ∣ ∣ I m φ ∣ |G|=|Ker\varphi||Im\varphi| ∣G∣=∣Kerφ∣∣Imφ∣
设 G , G ′ G,G' G,G′是两个群, φ : G → G ′ \varphi:G\rightarrow G' φ:G→G′是一个群同态,设 G ˉ \bar{G} Gˉ是 N = K e r φ N=Ker\varphi N=Kerφ的所有陪集的集合,则 φ ˉ : G ˉ → I m φ , φ ( a N ) = I m ( a ) \bar\varphi:\bar{G}\rightarrow Im\varphi,\varphi(aN)=Im(a) φˉ:Gˉ→Imφ,φ(aN)=Im(a)是一个双射。
证明:
- 构造映射: φ ˉ : G ˉ → I m φ , φ ˉ ( a N ) = φ ( a ) \bar\varphi:\bar{G}\rightarrow Im\varphi,\bar{\varphi}(aN)=\varphi(a) φˉ