【几何学笔记】商群与同构

商群:

G为一个群,NG的一个子群,记G/N\left ( G mod N \right )为一个集合G/N = \left \{ \right.aN|a\in G\left. \right \}aNN的左陪集,即G/N是一个集合的集合。

G/N是一个群,叫做商群,其群乘积定义为a,b\in G,aH\star bH = (ab)H,则需要先证明G/N是个群,先证明abN是由aN,bN唯一确定,而与陪集代表元的选择无关,需要证明若a_{1}N = a_{2}N, b_{1}N = b_{2}N,则\left ( a_{1}b_{1} \right )N = \left ( a_{2}b_{2} \right )N

由于a_{1}N = a_{2}N, b_{1}N = b_{2}N,则必有v,u\in N,使得a_{1} = a_{2}v,b_{1} = b_{2}u,a_{1}b_{1} = a_{2}vb_{2} u,由于vu\in N,若要得到a_{1}b_{1} = a_{2}b_{2} vu的结果,则vb_{2} = b_{2}v,即N的左右陪集相等,即N为正规子群。若N不是正规子群,则G/N为一个线性空间。

其他封闭性,逆元等证明易证。其余如商集合,商空间(粘合空间),商拓扑同理。

举个例子:实数加群R与其子群整数加群Z做商,R/Z = \left \{\right.aZ|a\in R\left. \right \},当a\in \left [ 0 \right, \left 1 \right )所获得的集合与a每加(减)一个整数所得到的集合相等,0+Z = 1 + Z = 2 + Z\cdots0.1+Z = 1.1 + Z = 2.1 + Z\cdots以此类推,0.9+Z = 1.9 + Z = 2.9 + Z\cdotsRZ来说有用的只有\left [ 0 \right, \left 1 \right )中的元素,商群相当于作了信息压缩,这个商群同构于圆群即特殊正交群 SO(2) = \left \{ e^{2\pi ix} \right.|x\in R\left. \right \}

群同态(homomorphism):

给定两个群G,H,从GH之间的群同态是指有映射f:G\rightarrow H,使得对于G中的所有元素u,v都有f(uv) = f(u)f(v)。记作G\sim HG同态于H

同态像:

f:G\rightarrow H为群同态,则Img(f) = \left \{f(g)|g\in G \right \}G在映射f下的像,记作f的同态像。

在微分流形中,\alpha = d\beta\alpha 是微分算子 d 的像,叫作恰当形式。

同态核:

f:G\rightarrow H为群同态,则Ker(f) = \left \{ g\in G|f(g) = e' \right \},为f的同态核。

在微分流形中,\alpha是微分算子 d 的核,即  = 0 。叫作闭形式。

群同构(isomorphism):

GH同态,且为双射,即一一映射,则GH之间同构,记作G\cong H

群同态定理:

f:G\rightarrow H为群同态,则G/Ker(f) \cong Img(f)。这个定理通过构造商群,以同构(单满同态)表达式联系了同态的像(Image)与核(Kernel)。单满同态为同构,同构视为等效。同态的核体现了单射的程度,同态的像 体现了满射的程度,两者一起描述了同态偏离同构的程度。可以理解为G \cong Img(f)\oplus Ker(f),即群G同构于同态核与同态像的直积。

 

 

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值