GCN代码逐行解释(简单实例,pytorch实现)

        这段代码实现了一个简单的图神经网络(GNN)模型,用于节点分类任务。具体来说,模型使用了两个GCNConv层来实现图卷积操作,其中第一个层将输入特征转换为16维特征,第二个层将16维特征转换为数据集中的类别数目个特征。模型的forward方法定义了模型的前向传播过程,其中包括了两个GCNConv层的应用以及激活函数ReLU和dropout的使用。

        在代码的主体部分,首先加载了Cora数据集,并初始化了模型、优化器和数据。然后进行了200个epoch的训练过程,其中使用了Adam优化器和负对数似然损失函数进行模型参数的更新。最后,对模型进行了测试,并计算了模型在测试集上的准确率。

        这段代码是在Cora数据集上进行节点分类任务的一个简单示例,可以根据实际任务需求进行修改和调整。

        数据集(代码可以自己加载):

        Cora数据集是一个常用的图数据集,用于节点分类任务。该数据集包含了一个学术引文网络,其中节点代表论文,边代表论文之间的引用关系。每个节点具有一个特征向量,表示论文的词袋表示或其他特征。同时,节点被分为七个不同的类别,即数据集中的类别数目为7。

        在Cora数据集中,通常会将节点划分为训练集、验证集和测试集。训练集用于训练模型的参数,验证集用于调整超参数和防止过拟合,而测试集则用于评估模型的性能。

总的来说,Cora数据集是一个典型的图数据集,用于研究图数据上的节点分类和其他任务。通过在Cora数据集上进行实验,可以评估图神经网络模型在节点分类任务上的性能。

 完整可运行代码:

#导包
import torch #导入PyTorch库
import torch.nn.functional as F #导入PyTorch中的函数模块,通常用于激活函数、损失函数等操作
from torch_geometric.nn import GCNConv #从PyTorch几何库中导入图卷积网络层(GCNConv)

class GNN(torch.nn.Module): #定义一个GNN类,继承自PyTorch的Module类
    def __init__(self): #定义GNN类的初始化函数
        super().__init__() #调用父类(Module类)的初始化函数
        #创建第一个图卷积层,输入特征维度为数据集节点特征维度,输出特征维度为16
        self.conv1 = GCNConv(dataset.num_node_features, 16) 
        #创建第二个图卷积层,输入特征维度为16,输出特征维度为数据集类别数量
        self.conv2 = GCNConv(16, dataset.num_classes)
    def forward(self, data): #定义前向传播函数,接受一个数据对象作为输入
        x, edge_index = data.x, data.edge_index #从数据对象中获取节点特征和边索引
        x = self.conv1(x, edge_index) #通过第一个图卷积层处理节点特征
        x = F.relu(x) #对输出进行ReLU激活函数操作
        x = F.dropout(x, training=self.training) #对输出进行Dropout操作,用于防止过拟合
        x = self.conv2(x, edge_index) #通过第二个图卷积层处理节点特征
        return F.log_softmax(x, dim=1) #对输出进行LogSoftmax操作,得到预测结果

#数据加载和模型训练部分:
from torch_geometric.datasets import Planetoid
dataset = Planetoid(root='D:./data/Corak', name='Cora')  #加载Cora数据集
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') #选择设备,如果有GPU则使用GPU
model = GNN().to(device) #实例化GNN模型,并移动到对应设备
data = dataset[0].to(device) #获取数据集的第一个图数据,并移动到对应设备
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4) #定义Adam优化器
model.train() #将模型设置为训练模式
for epoch in range(200): #进行训练循环,共200个epoch
    optimizer.zero_grad() #梯度清零
    out = model(data) #前向传播,得到模型输出
    loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask]) #计算损失,使用负对数似然损失函数
    loss.backward() #反向传播计算梯度
    optimizer.step() #更新模型参数

#模型评估部分:
model.eval() #将模型设置为评估模式
pred = model(data).argmax(dim=1) #进行预测,并取预测结果的最大值作为预测类别
correct = (pred[data.test_mask] == data.y[data.test_mask]).sum() #计算预测正确的数量
acc = int(correct) / int(data.test_mask.sum()) #计算准确率
print(f'Accuracy: {acc:.4f}')

 运行结果:

Accuracy: 0.8130

  • 10
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值