多层感知机(MLP)代码示例

本文介绍了如何使用PyTorch库构建一个简单的多层感知机(MLP)模型,对MNIST数据集进行训练,包括数据预处理、模型定义、超参数设置、训练过程、测试及图像可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先,我们导入所需的库:

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import matplotlib.pyplot as plt

然后,我们加载MNIST数据集:

train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor())

接下来,我们定义MLP模型类:

class MLP(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes):
        super(MLP, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(hidden_size, num_classes)
        
    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        return out

在这个例子中,MLP模型有两个全连接层。在初始化函数__init__()中,我们定义了两个全连接层self.fc1self.fc2,激活函数ReLUself.relu。在前向传播函数forward()中,我们将输入数据x传递给fc1,然后通过ReLU激活函数,再传递给fc2

我们继续设置超参数:

input_size = 784
hidden_size = 500
num_classes = 10
num_epochs = 5
batch_size = 100
learning_rate = 0.001

这里的input_size是输入图像的大小(28x28=784),hidden_size是隐藏层的大小,num_classes是输出的类别数(这里是10个数字),num_epochs是训练的轮数,batch_size是每批训练样本的数量,learning_rate是学习率。

然后,我们准备数据加载器:

train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)

数据加载器用于将数据分成小批次进行训练和测试。

接下来,我们实例化模型、定义损失函数和优化器:

model = MLP(input_size, hidden_size, num_classes)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

在每个训练周期中,我们对训练数据进行迭代,进行前向传播、计算损失、反向传播和参数更新:

total_step = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = images.reshape(-1, 28*28)
        
        # 前向传播和计算损失
        outputs = model(images)
        loss = criterion(outputs, labels)
        
        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        if (i+1) % 100 == 0:
            print(f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{total_step}], Loss: {loss.item()}')

在每个训练周期结束后,我们在测试数据上进行模型评估,计算准确率:

model.eval()
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.reshape(-1, 28*28)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print(f'该模型在10000张测试图像上的准确性: {100 * correct / total}%')

最后,我们显示一些图像示例:

images, labels = next(iter(test_loader))
images = images[:5]
labels = labels[:5]

fig, axes = plt.subplots(1, 5, figsize=(10,2))

for i in range(5):
    image = images[i].numpy().squeeze()
    axes[i].imshow(image, cmap='gray')
    axes[i].axis('off')
    axes[i].set_title(f'Ground Truth: {labels[i]}')

plt.show()

运行结果展示:

Epoch [1/5], Step [100/600], Loss: 0.5327053666114807
Epoch [1/5], Step [200/600], Loss: 0.1780116856098175
Epoch [1/5], Step [300/600], Loss: 0.22097641229629517
Epoch [1/5], Step [400/600], Loss: 0.21554379165172577
Epoch [1/5], Step [500/600], Loss: 0.28248608112335205
Epoch [1/5], Step [600/600], Loss: 0.08389710634946823
Epoch [2/5], Step [100/600], Loss: 0.15392127633094788
Epoch [2/5], Step [200/600], Loss: 0.139845073223114
Epoch [2/5], Step [300/600], Loss: 0.10855261981487274
Epoch [2/5], Step [400/600], Loss: 0.05962827056646347
Epoch [2/5], Step [500/600], Loss: 0.0902574360370636
Epoch [2/5], Step [600/600], Loss: 0.153961181640625
Epoch [3/5], Step [100/600], Loss: 0.08641496300697327
Epoch [3/5], Step [200/600], Loss: 0.05064410716295242
Epoch [3/5], Step [300/600], Loss: 0.05174357816576958
Epoch [3/5], Step [400/600], Loss: 0.05410122871398926
Epoch [3/5], Step [500/600], Loss: 0.07135355472564697
Epoch [3/5], Step [600/600], Loss: 0.05457733944058418
Epoch [4/5], Step [100/600], Loss: 0.07079239934682846
Epoch [4/5], Step [200/600], Loss: 0.048895031213760376
Epoch [4/5], Step [300/600], Loss: 0.09586360305547714
Epoch [4/5], Step [400/600], Loss: 0.03884414583444595
Epoch [4/5], Step [500/600], Loss: 0.127535879611969
Epoch [4/5], Step [600/600], Loss: 0.024616247043013573
Epoch [5/5], Step [100/600], Loss: 0.024639535695314407
Epoch [5/5], Step [200/600], Loss: 0.006189913023263216
Epoch [5/5], Step [300/600], Loss: 0.08351482450962067
Epoch [5/5], Step [400/600], Loss: 0.024257291108369827
Epoch [5/5], Step [500/600], Loss: 0.032762959599494934
Epoch [5/5], Step [600/600], Loss: 0.016724038869142532
该模型在10000张测试图像上的准确性: 97.86%

整体代码:

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import matplotlib.pyplot as plt

# 加载MNIST数据集
train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor())


# 定义模型
class MLP(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes):
        super(MLP, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(hidden_size, num_classes)

    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        return out


# 设置超参数
input_size = 784
hidden_size = 500
num_classes = 10
num_epochs = 5
batch_size = 100
learning_rate = 0.001

# 准备数据加载器
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)

# 定义模型和损失函数
model = MLP(input_size, hidden_size, num_classes)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

# 训练模型
total_step = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = images.reshape(-1, 28 * 28)

        # 前向传播和计算损失
        outputs = model(images)
        loss = criterion(outputs, labels)

        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if (i + 1) % 100 == 0:
            print(f'Epoch [{epoch + 1}/{num_epochs}], Step [{i + 1}/{total_step}], Loss: {loss.item()}')

# 在测试集上测试模型
model.eval()
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.reshape(-1, 28 * 28)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print(f'该模型在10000张测试图像上的准确性: {100 * correct / total}%')

# 显示图像示例
images, labels = next(iter(test_loader))
images = images[:5]
labels = labels[:5]

fig, axes = plt.subplots(1, 5, figsize=(10, 2))

for i in range(5):
    image = images[i].numpy().squeeze()
    axes[i].imshow(image, cmap='gray')
    axes[i].axis('off')
    axes[i].set_title(f'Ground Truth: {labels[i]}')

plt.show()

### MLP 多层感知器代码实现 在 Python 中使用 PyTorch 实现一个多层感知机MLP),可以按照如下方式构建: ```python import torch import torch.nn as nn class MLP(nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(MLP, self).__init__() # 定义全连接层,输入维度为input_size,输出维度为hidden_size self.fc1 = nn.Linear(input_size, hidden_size) # 使用ReLU激活函数 self.relu = nn.ReLU() # 定义第二个全连接层,输入维度为hidden_size,输出维度为num_classes self.fc2 = nn.Linear(hidden_size, num_classes) def forward(self, x): # 前向传播过程 out = self.fc1(x) # 输入通过第一个全连接层 out = self.relu(out) # 应用ReLU激活函数 out = self.fc2(out) # 输入通过第二个全连接层 return out # 返回最终输出 ``` 此段代码展示了如何创建一个简单的两层神经网络模型[^2]。 为了训练这个模型并进行分类预测,在MATLAB环境下也可以利用内置工具箱来完成相似的任务。下面是一个基于MATLAB的简单例子用于说明如何设置和训练一个MLP来进行多特征分类预测: ```matlab % 加载数据集 load fisheriris; attributes = meas; % 特征矩阵 groups = species; % 类别标签 % 划分训练集与测试集 cv = cvpartition(size(attributes,1),'HoldOut',0.3); trainData = attributes(training(cv),:); testData = attributes(test(cv),:); trainGroups = groups(training(cv)); testGroups = groups(test(cv)); % 创建MLP分类器对象 mlpClassifier = fitcnet(trainData, trainGroups,'LayerSizes',[10 8]); % 预测新样本所属类别 predictedLabels = predict(mlpClassifier,testData); % 计算准确率 accuracy = sum(strcmp(predictedLabels,testGroups))/length(testGroups)*100; disp(['Accuracy of the classifier is ', num2str(accuracy), '%']); ``` 上述 MATLAB 脚本实现了对鸢尾花数据集上的多层感知机分类,并计算了其准确性[^1]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值