信号处理杂学Matlab

本文介绍了数字信号处理的基础概念,包括混频响应的抗混叠处理,通过奈奎斯特采样定理和模拟低通滤波器。详细阐述了正弦波频幅计算、窗函数选择(如海宁窗和哈布斯窗)以及平均处理在频谱分析中的应用。此外,文章还探讨了Matlab中的fft变换,以及如何使用fdatool设计滤波器,包括带通滤波、陷通滤波和巴特沃斯滤波器在信号处理中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.  入门

  • 注意混频响应,需要抗混叠,奈奎斯特采样定理
  • 模拟低通滤波器可以抗混叠,数字低通滤波器
  • 原理

谐波叠加:一个激波的n次谐波等同于其振幅强度的1/n,一个方波即一个激波和多个谐波叠加而成

  1. 时域向频域转化

第一步:采样。尺寸或快长度(size) = 采样数量(2的次方)转化为数据

第二步:正弦波频幅和块计算时域相关性,实现最佳匹配(相当循环对块中每个频率的幅值进行枚举,选出相关性最大的):

 

 此处幅值单位为bin,代表着相关性大小。Δ代表频率分辨率,除非快长度改变,否则Δf不变

 第三步:窗函数:

弥散/泄露: 由于采样可能造成误差(及采样出现断层),没有完美匹配起始点和终点,导致存在无关bin。

选择合适窗函数:关系到筛选目的

嗨!很高兴回答你关于Python的NumPy库的问题。NumPy是一个强大的科计算库,提供了高性能的数组对象和各种功能丰富的数函数。 首先,你可以使用以下命令安装NumPy库: ```python pip install numpy ``` 一旦安装完成,你可以在Python脚本中导入NumPy库: ```python import numpy as np ``` 现在让我们来看一些NumPy的常用功能。 1. 创建NumPy数组: - 使用`np.array()`函数从Python列表或元组创建数组。 - 使用`np.zeros()`创建一个元素全为0的数组。 - 使用`np.ones()`创建一个元素全为1的数组。 - 使用`np.random`模块生成随机数组。 2. 数组操作: - 通过索引访问和修改数组的元素。 - 使用切片操作提取子数组。 - 使用数组的形状、大小和维度等属性。 3. 数函数: - NumPy提供了丰富的数函数,例如平方根(`np.sqrt()`)、指数函数(`np.exp()`)、对数函数(`np.log()`)等。 - 通过在数组上应用这些函数,可以进行元素级别的数操作。 4. 数组运算: - NumPy支持基本的数组运算,如加法、减法、乘法和除法。 - 这些运算可以在两个数组之间进行,也可以在数组和标量之间进行。 5. 线性代数: - NumPy提供了许多线性代数操作的函数,如矩阵乘法(`np.dot()`)、矩阵求逆(`np.linalg.inv()`)、特征值和特征向量(`np.linalg.eig()`)等。 这只是NumPy库的一小部分功能,但对于进行科计算和数据分析来说非常重要。你可以参考NumPy官方文档以了解更多详细信息:https://numpy.org/doc/ 希望这些信息能帮助你开始习NumPy库!如果还有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值