使用靶心图理解偏差和方差,中心为完美预测的模型,远离中心模型表现越来越差,蓝色的点为模型的训练集得出的结果。左边的两个靶子数据集中,右边的比较分散,分散的方差较大。上下的靶子则为偏差的描述。
机器学习——方差和偏差比较
最新推荐文章于 2024-04-27 08:06:37 发布
本文通过靶心图来阐述偏差和方差的概念。靶心的中心代表理想模型,偏离中心的程度反映了模型预测的误差。左图中,训练集结果的靶子显示了较高的方差,即数据集分布较分散。而上方的靶子则说明了偏差问题,模型对数据的总体趋势有误。理解偏差和方差有助于优化模型性能。
摘要由CSDN通过智能技术生成