机器学习——方差和偏差比较

本文通过靶心图来阐述偏差和方差的概念。靶心的中心代表理想模型,偏离中心的程度反映了模型预测的误差。左图中,训练集结果的靶子显示了较高的方差,即数据集分布较分散。而上方的靶子则说明了偏差问题,模型对数据的总体趋势有误。理解偏差和方差有助于优化模型性能。
摘要由CSDN通过智能技术生成

 使用靶心图理解偏差和方差,中心为完美预测的模型,远离中心模型表现越来越差,蓝色的点为模型的训练集得出的结果。左边的两个靶子数据集中,右边的比较分散,分散的方差较大。上下的靶子则为偏差的描述。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值