NNDL 实验七 循环神经网络(2)梯度爆炸实验

目录

6.2 梯度爆炸实验

6.2.1 梯度打印函数

6.2.2 复现梯度爆炸现象

6.2.3 使用梯度截断解决梯度爆炸问题

【思考题】梯度截断解决梯度爆炸问题的原理是什么?

总结

参考


6.2 梯度爆炸实验

造成简单循环网络较难建模长程依赖问题的原因有两个:梯度爆炸梯度消失。一般来讲,循环网络的梯度爆炸问题比较容易解决,一般通过权重衰减或梯度截断可以较好地来避免;对于梯度消失问题,更加有效的方式是改变模型,比如通过长短期记忆网络LSTM来进行缓解。


本节将首先进行复现简单循环网络中的梯度爆炸问题,然后尝试使用梯度截断的方式进行解决。这里采用长度为20的数据集进行实验,训练过程中将进行输出W,U,b的梯度向量的范数,以此来衡量梯度的变化情况。

6.2.1 梯度打印函数

使用custom_print_log实现了在训练过程中打印梯度的功能,custom_print_log需要接收runner的实例,并通过model.named_parameters()获取该模型中的参数名和参数值. 这里我们分别定义W_list, U_list和b_list,用于分别存储训练过程中参数W,U和b的梯度范数。

import torch
W_list = []
U_list = []
b_list = []
 
 
# 计算梯度范数
def custom_print_log(runner):
    model = runner.model
    W_grad_l2, U_grad_l2, b_grad_l2 = 0, 0, 0
    for name, param in model.named_parameters():
        if name == "rnn_model.W":
            W_grad_l2 = torch.norm(param.grad, p=2).numpy()
        if name == "rnn_model.U":
            U_grad_l2 = torch.norm(param.grad, p=2).numpy()
        if name == "rnn_model.b":
            b_grad_l2 = torch.norm(param.grad, p=2).numpy()
    print(f"[Training] W_grad_l2: {W_grad_l2:.5f}, U_grad_l2: {U_grad_l2:.5f}, b_grad_l2: {b_grad_l2:.5f} ")
    W_list.append(W_grad_l2)
    U_list.append(U_grad_l2)
    b_list.append(b_grad_l2)

 【思考】什么是范数,什么是L2范数,这里为什么要打印梯度范数?

范数(Norm)是具有度量性质的函数,它经常使用来衡量矢量函数的长度或大小,是泛函分析中的一个基本概念。

L2 范数:就是通常意义上的模;L2范数通常会被用来做优化目标函数的正则化项,防止模型为了迎合训练集而过于复杂造成过拟合的情况,从而提高模型的泛化能力。

为什么要打印梯度范数:

打印梯度范数值可以帮助我们更直观地了解模型训练情况的好坏,梯度过大或过小都有可能导致模型的训练效果变差,因此打印梯度范数有利于我们更快地对模型作出修改。 

6.2.2 复现梯度爆炸现象

为了更好地复现梯度爆炸问题,使用SGD优化器将批大小和学习率调大,学习率为0.2,同时在计算交叉熵损失时,将reduction设置为sum,表示将损失进行累加。 代码实现如下:

import os
import random
import torch
import numpy as np
 
np.random.seed(0)
random.seed(0)
torch.manual_seed(0)
 
# 训练轮次
num_epochs = 50
# 学习率
lr = 0.2
# 输入数字的类别数
num_digits = 10
# 将数字映射为向量的维度
input_size = 32
# 隐状态向量的维度
hidden_size = 32
# 预测数字的类别数
num_classes = 19
# 批大小
batch_size = 64
# 模型保存目录
save_dir = "./checkpoints"
 
 
# 可以设置不同的length进行不同长度数据的预测实验
length = 20
print(f"\n====> Training SRN with data of length {length}.")
 
# 加载长度为length的数据
data_path = f"D:/datasets/{length}"
train_examples, dev_examples, test_examples = load_data(data_path)
train_set, dev_set, test_set = DigitSumDataset(train_examples), DigitSumDataset(dev_examples),DigitSumDataset(test_examples)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size)
dev_loader = torch.utils.data.DataLoader(dev_set, batch_size=batch_size)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size)
# 实例化模型
base_model = SRN(input_size, hidden_size)
model = Model_RNN4SeqClass(base_model, num_digits, input_size, hidden_size, num_classes)
# 指定优化器
optimizer = torch.optim.SGD(model.parameters(),lr)
# 定义评价指标
metric = Accuracy()
# 定义损失函数
loss_fn = nn.CrossEntropyLoss(reduction="sum")
 
# 基于以上组件,实例化Runner
runner = RunnerV3(model, optimizer, loss_fn, metric)
 
# 进行模型训练
model_save_path = os.path.join(save_dir, f"srn_explosion_model_{length}.pdparams")
runner.train(train_loader, dev_loader, num_epochs=num_epochs, eval_steps=100, log_steps=1,
             save_path=model_save_path, custom_print_log=custom_print_log)

运行结果

 

 

 接下来,可以获取训练过程中关于WUb参数梯度的L2范数,并将其绘制为图片以便展示,相应代码如下:

import matplotlib.pyplot as plt
def plot_grad(W_list, U_list, b_list, save_path, keep_steps=40):
    # 开始绘制图片
    plt.figure()
    # 默认保留前40步的结果
    steps = list(range(keep_steps))
    plt.plot(steps, W_list[:keep_steps], "r-", color="#e4007f", label="W_grad_l2")
    plt.plot(steps, U_list[:keep_steps], "-.", color="#f19ec2", label="U_grad_l2")
    plt.plot(steps, b_list[:keep_steps], "--", color="#000000", label="b_grad_l2")
 
    plt.xlabel("step")
    plt.ylabel("L2 Norm")
    plt.legend(loc="upper right")
    plt.show()
    plt.savefig(save_path)
    print("image has been saved to: ", save_path)
 
save_path = f"./images/6.8.pdf"
plot_grad(W_list, U_list, b_list, save_path)

运行结果

 

 上图展示了在训练过程中关于,和参数梯度的L2范数,可以看到经过学习率等方式的调整,梯度范数急剧变大,而后梯度范数几乎为0. 这是因为TanhTanh为SigmoidSigmoid型函数,其饱和区的导数接近于0,由于梯度的急剧变化,参数数值变的较大或较小,容易落入梯度饱和区,导致梯度为0,模型很难继续训练. 

 接下来,使用该模型在测试集上进行测试。 

print(f"Evaluate SRN with data length {length}.")
model_path = os.path.join(save_dir, "srn_explosion_model_20.pdparams")
torch.load(model_path)
 
# 使用测试集评价模型,获取测试集上的预测准确率
score, _ = runner.evaluate(test_loader)
print(f"[SRN] length:{length}, Score: {score: .5f}")

 运行结果:

Evaluate SRN with data length 20.
[SRN] length:20, Score:  0.06000

6.2.3 使用梯度截断解决梯度爆炸问题

梯度截断是一种可以有效解决梯度爆炸问题的启发式方法,当梯度的模大于一定阈值时,就将它截断成为一个较小的数。一般有两种截断方式:按值截断和按模截断.本实验使用按模截断的方式解决梯度爆炸问题。

按模截断是按照梯度向量g的模进行截断,保证梯度向量的模值不大于阈值b,裁剪后的梯度为:

 

 当梯度向量g的模不大于阈值b时,g数值不变,否则对g进行数值缩放。 

在飞桨中,可以使用paddle.nn.ClipGradByNorm进行按模截断.— pytorch中用什么? 

pytorch 用 torch.nn.utils.clip_grad_norm_ 进行梯度截断

在引入梯度截断之后,将重新观察模型的训练情况。这里我们重新实例化一下:模型和优化器,然后组装runner,进行训练。代码实现如下:

# 清空梯度列表
W_list.clear()
U_list.clear()
b_list.clear()
# 实例化模型
base_model = SRN(input_size, hidden_size)
model = Model_RNN4SeqClass(base_model, num_digits, input_size, hidden_size, num_classes)
 
# 定义clip,并实例化优化器
 
optimizer = torch.optim.SGD(lr=lr, params=model.parameters())
# 定义评价指标
metric = Accuracy()
# 定义损失函数
loss_fn = nn.CrossEntropyLoss(reduction="sum")
 
# 实例化Runner
runner = RunnerV3(model, optimizer, loss_fn, metric)
 
# 训练模型
model_save_path = os.path.join(save_dir, f"srn_fix_explosion_model_{length}.pdparams")
runner.train(train_loader, dev_loader, num_epochs=num_epochs, eval_steps=100, log_steps=1, save_path=model_save_path, custom_print_log=custom_print_log)
# 进行模型训练
model_save_path = os.path.join(save_dir, f"srn_explosion_model_{length}.pdparams")

在引入梯度截断后,获取训练过程中关于WUb参数梯度的L2范数,并将其绘制为图片以便展示,相应代码如下: 

save_path = f"D:/images/6.9.pdf"
plot_grad(W_list, U_list, b_list, save_path, keep_steps=100)

运行结果

 

 接下来,使用梯度截断策略的模型在测试集上进行测试。

print(f"Evaluate SRN with data length {length}.")
 
# 加载训练过程中效果最好的模型
model_path = os.path.join(save_dir, f"srn_fix_explosion_model_{length}.pdparams")
torch.load(model_path)
 
# 使用测试集评价模型,获取测试集上的预测准确率
score, _ = runner.evaluate(test_loader)
print(f"[SRN] length:{length}, Score: {score: .5f}")

运行结果

Evaluate SRN with data length 20.
[SRN] length:20, Score:  0.05000

 由于为复现梯度爆炸现象,改变了学习率,优化器等,因此准确率相对比较低。但由于采用梯度截断策略后,在后续训练过程中,模型参数能够被更新优化,因此准确率有一定的提升。

【思考题】梯度截断解决梯度爆炸问题的原理是什么?

 梯度截断:将梯度约束在某一个区间之内,在训练的过程中,在优化器更新之前进行梯度截断操作。梯度裁剪是解决梯度爆炸的一种技术,其出发点是非常简明的:如果梯度变得非常大,那么我们就调节它使其保持较小的状态。梯度裁剪确保了梯度矢量的最大范数(本文中规定为c)。即使在模型的损失函数不规则时,这一技巧也有助于梯度下降保持合理的行为。

总结

这次实验主要是解决梯度爆炸实验,这个实验实现了梯度爆炸现象,并且通过梯度截断来解决梯度爆炸问题,通过这个实验让我对于梯度爆炸的产生以及如何解决这一问题都有了更加详细的了解和理解。

参考

NNDL 实验6(上) - HBU_DAVID - 博客园 (cnblogs.com)

范数及其意义 

解决 “梯度爆炸” 的方法 - 梯度裁剪 

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值