同济版高数(下)复习提纲

:会有格式错误,已上传资源。(12章有空再添加)

第八章 向量代数及空间解析几何

第一节

  • 各种律
  • 单位向量: a ∣ a ∣ \frac{a}{|a|} aa
  • **定理1:向量a≠0, b // a的充分必要条件是存在唯一实数 λ \lambda λ 使得b= λ \lambda λa ** $\Rightarrow $对应坐标成比例
  • 空间直角坐标
    • 坐标分解式 r = x i + y j + z k r = xi + yj + zk r=xi+yj+zk 这里x,y,z是向量 r 的坐标,ijk是三个方向
    • 向径 r = OM 点M关于原点O的向径
    • 两点间的距离公式
    • 方向余弦: ( c o s α , c o s β , c o s γ ) = ( x ∣ r ∣ , y ∣ r ∣ , z ∣ r ∣ ) = r ∣ r ∣ = e r (cos \alpha, cos\beta, cos\gamma) = (\frac{x}{|r|},\frac{y}{|r|}, \frac{z}{|r|})= \frac{r}{|r|}=e_r (cosα,cosβ,cosγ)=(rx,ry,rz)=rr=er
    • 投影的三个性值:
      • $Prj_ua=|a|cos\phi\Rightarrow $ a在u上的投影
      • P r j u ( a + b ) = P r j u a + P r j u b Prj_u(a+b)=Prj_ua +Prj_ub Prju(a+b)=Prjua+Prjub
      • P r j u ( λ a ) = λ P r j u a Prj_u(\lambda a)=\lambda Prj_ua Prju(λa)=λPrjua

第二节

  • 数量积: a ⋅ b = ∣ b ∣ P r j b a a ·b=|b|Prj_ba ab=bPrjba (可交换)
  • 向量积: c = a × b = ∣ a ∣ ∣ b ∣ sin ⁡ θ c=a×b=|a||b|\sin \theta c=a×b=absinθ
    • 在给出三个点,求三个点围城的三角形的面积时可用,所得向量求模就是面积。

第三节 平面及其方程

  • 曲面方程 F(x, y, z) = 0
  • 交线: { F ( x , y , z ) = 0 G ( x , y , z ) = 0 \begin{cases} F(x, y, z)=0 \\ G(x,y,z ) = 0 \end{cases} {F(x,y,z)=0G(x,y,z)=0
  • **点法式:**假设点 (a, b, c) , 法向量(1, 2, -3) $\Rightarrow $ ( x − a ) + 2 ( y − b ) − 3 ( z − c ) = 0 (x-a)+2(y-b)-3(z-c)=0 (xa)+2(yb)3(zc)=0求得方程
  • 平面一般方程: Ax + By + Cz + D = 0
    • 当D等于0,平面过原点
    • 当A等于0,平面平行x轴
    • 当A=B=0,平面平行xoy平面。 以上为充分必要。
  • 平面截距式方程: $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 $ a , b , c 是x , y , z上的截距.
  • 平面夹角: cos ⁡ θ = ∣ A 1 A 2 + B 1 B 2 + C 1 C 2 ∣ A 1 2 + B 1 2 + C 1 2 A 2 2 + B 2 2 + C 2 2 \cos \theta =\frac{|A_1A_2+B_1B_2+C_1C_2|}{\sqrt{A_1^2+B_1^2+C_1^2}\sqrt{A_2^2+B_2^2+C_2^2}} cosθ=A12+B12+C12 A22+B22+C22 A1A2+B1B2+C1C2
    • **平面垂直 ** $\Rightarrow A_1A_2+B_1B_2+C_1C_2=0 $
    • 点到面的距离: d = ∣ P 1 P 0 ∣ ∣ cos ⁡ θ ∣ = ∣ P 1 P 0 ⋅ n ∣ ∣ n ∣ d = |P_1P_0||\cos \theta|=\frac{|P_1P_0·n|}{|n|} d=P1P0cosθ=nP1P0n P1是面上的点,NP0构成 n 为面的法向量 cos theta是法向量和P0P1的夹角

第四节 空间直线及其方程

  • 空间直线的一般方程: { A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 \begin{cases} A_1x+B_1y+C_1z+D_1=0\\A_2x+B_2y+C_2z+D_2=0 \end{cases} {A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0
  • 空间直线的对称式:
    • 直线方向向量: s ⃗ = ( m , n , p )      找 到 另 一 个 向 量 M 0 M ⃗ = ( x − x o , y − y 0 , z − z 0 ) x − x o m = y − y o n = z − z o p \vec s = (m,n,p)\ \ \ \ 找到另一个向量\vec {M_0M}=(x-x_o,y-y_0,z-z_0)\\\frac{x-x_o}{m}=\frac{y-y_o}{n}=\frac{z-z_o}{p} s =(m,n,p)    M0M =(xxo,yy0,zz0)mxxo=nyyo=pzzo
      • 当m(或者其他的)为零,则 { x − x 0 = 0 y − y o n = z − z o p \begin{cases}x-x_0=0\\\frac{y-y_o}{n}=\frac{z-z_o}{p}\end{cases} {xx0=0nyyo=pzzo
  • 空间直线的参数方程: $\frac{x-x_o}{m}=\frac{y-y_o}{n}=\frac{z-z_o}{p} = t \Rightarrow \begin{cases}x=x_0+mt\y=y_0+nt\z=z_0+pt \end{cases} $
  • 两直线的夹角(余弦值): cos ⁡ ϕ = ∣ m 1 m 2 + n 1 n 2 + p 1 p 2 ∣ m 1 2 + n 1 2 + p 1 2 m 2 2 + n 2 2 + p 2 2 \cos \phi=\frac{|m_1m_2+n_1n_2+p_1p_2|}{\sqrt{m_1^2+n_1^2+p_1^2}\sqrt{m_2^2+n_2^2+p_2^2}} cosϕ=m12+n12+p12 m22+n22+p22 m1m2+n1n2+p1p2
  • 直线与平面的夹角(正弦值): sin ⁡ ϕ = ∣ A m + B n + C p ∣ A 2 + B 2 + C 2 m 2 + n 2 + p 2 \sin \phi=\frac{|Am+Bn+Cp|}{\sqrt{A^2+B^2+C^2}\sqrt{m^2+n^2+p^2}} sinϕ=A2+B2+C2 m2+n2+p2 Am+Bn+Cp
  • 配合书中的 P34 进行例题回顾
  • 平面束:例子:求过线平面哪个平面与已知平面垂直。 已 知 直 线 { x + y − z − 1 = 0 x − y + z + 1 = 0 确 定 平 面 束 : ( x + y − z − 1 ) + λ ( x − y + z + 1 ) = 0 已知直线\begin{cases}x+y-z-1=0\\x-y+z+1=0 \end{cases}\\确定平面束:(x+y-z-1)+\lambda(x-y+z+1)=0 线{x+yz1=0xy+z+1=0(x+yz1)+λ(xy+z+1)=0

第五节 曲面及其方程

  • 球面一般方程: A x 2 + A y 2 + A z 2 + D x + E y + F z + G = 0 可 化 为 ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 = R 2 Ax^2+Ay^2+Az^2+Dx+Ey+Fz+G=0\\可化为 (x-x_0)^2+(y-y_0)^2+(z-z_0)^2=R^2 Ax2+Ay2+Az2+Dx+Ey+Fz+G=0(xx0)2+(yy0)2+(zz0)2=R2
  • 旋转曲面: y o z 有 一 个 曲 线 C : f ( y , z ) = 0    绕 z 轴 旋 转 → f ( − + x 2 + y 2 , z ) = 0 yoz有一个曲线C :f(y,z)=0\ \ 绕z轴旋转\rightarrow f(^+_- \sqrt{x^2+y^2}, z) = 0 yoz线Cf(y,z)=0  zf(+x2+y2 ,z)=0
  • 柱面: 一般缺少一个变量: x 2 + y 2 = R 2 在 空 间 中 这 是 z 不 受 限 的 , 所 以 是 以 底 线 半 径 为 R 无 限 高 的 柱 面 。 x^2+y^2=R^2 在空间中这是z不受限的,所以是以底线半径为R无限高的柱面。 x2+y2=R2z线R其他可根据类似进行扩展
  • 二次曲面:
    • 椭圆锥面: x 2 a 2 + y 2 b 2 = z 2 \frac{x^2}{a^2}+\frac{y^2}{b^2}=z^2 a2x2+b2y2=z2
    • 椭球面: x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1
    • 单叶双曲面: x 2 a 2 + y 2 b 2 − z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1 a2x2+b2y2c2z2=1
    • 双叶双曲面: x 2 a 2 − y 2 b 2 − z 2 c 2 = 1 \frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{z^2}{c^2}=1 a2x2b2y2c2z2=1
    • 椭圆抛物面: x 2 a 2 + y 2 b 2 = z \frac{x^2}{a^2}+\frac{y^2}{b^2}=z a2x2+b2y2=z
    • 双曲抛物面: x 2 a 2 − y 2 b 2 = z \frac{x^2}{a^2}-\frac{y^2}{b^2}=z a2x2b2y2=z

第六节 空间曲线及其方程

  • 空间曲线看做两个曲面的交线: { F ( x , y , z ) = 0 G ( x , y , z ) = 0 \begin{cases}F(x,y,z) = 0\\G(x,y,z)=0\end{cases} {F(x,y,z)=0G(x,y,z)=0
  • **空间曲线的参数方程:**例如: { x = a cos ⁡ w t y = a sin ⁡ w t z = v t \begin{cases}x = a\cos wt\\y=a\sin wt\\z = vt \end{cases} x=acoswty=asinwtz=vt 每个参数单独变化,这里形成螺旋线。
  • 空间曲线在坐标面上的投影: { H ( x , y ) = 0 z = 0 \begin{cases}H(x,y)=0\\z=0 \end{cases} {H(x,y)=0z=0
    • xoy面投影, z轴就为0. 其他可以类推。

第九章 多元函数微分法及其应用

第一节 多元函数的基本概念

  • 平面点集

  • 多元函数

  • 多元函数极限:

    • 定义:$设|f§-A|=|f(x,y)-A|<\epsilon的定义域为D,P_0(x_0,y_0)是D的聚点,\如果存在常数A,对于任意给定的正数\epsilon,总存在正数\delta,使得当点P(x,y)\in D\cap \overset{o}{U}(P_0, \delta),\都有|f§-A|=|f(x,y)-A|<\epsilon\就称A是极限 $
      • 一个函数有极限需要找到任何一条路径趋于P0都能接近A,如果趋于不同的值,就断定极限不存在。
  • 多元函数连续性:

    • 定义: f ( P ) = f ( x , y ) 的 定 义 域 是 D , P 0 ( x 0 , y 0 ) 为 D 的 聚 点 , 且 P 0 ∈ D 如 果 lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = f ( x 0 , y 0 ) , 则 称 在 点 P 0 连 续 , 不 连 续 就 称 为 间 断 点 。 f(P)=f(x,y)的定义域是D,P_0(x_0,y_0)为D的聚点,且P_0\in D如果\\\underset{(x,y)\rightarrow(x_0,y_0)}{\lim}f(x,y)=f(x_0,y_0),则称在点P_0连续,不连续就称为间断点。 f(P)=f(x,y)DP0(x0,y0)DP0D(x,y)(x0,y0)limf(x,y)=f(x0,y0),P0
    • 性质:
    1. 有界性与最大值最小值定理
    2. 介值定理
    3. 一致连续性定理

第二节 偏导数

  • 定义: 有 增 量 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) , i f 有 lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x 就 是 在 点 ( x 0 , y 0 ) 处 对 x 的 偏 导 数 。 有增量 f(x_0+\Delta x,y_0)-f(x_0,y_0),if 有\underset{\Delta x \rightarrow 0}{\lim}\frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x} 就是在点(x_0,y_0)处对x的偏导数。 f(x0+Δx,y0)f(x0,y0),ifΔx0limΔxf(x0+Δx,y0)f(x0,y0)(x0,y0)x
  • **高阶偏导数:**二阶及以上 KaTeX parse error: Undefined control sequence: \part at position 7: \frac{\̲p̲a̲r̲t̲}{\part x}(\fra… 其他(包括混合偏导)同理
  • 定理:如果函数 z = f ( x , y ) z = f(x,y) z=f(x,y)的两个二阶混合偏导数(对x对y 和 对y对x)在区域D内连续,那么在该区域内两个二阶混合偏导数必相等。 也就是说:二阶混合偏导数在连续的条件下,求导次序可以调换。

第三节 全微分

  • 定义: 设 函 数 z = f ( x , y ) 在 点 ( x , y ) 的 某 个 领 域 内 有 定 义 , 如 果 函 数 再 点 ( x , y ) 的 全 增 量 Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) 可 以 表 示 为 Δ z = A Δ x + B Δ y + o ( ρ ) 其 中 A 和 B 不 依 赖 于 Δ x 和 Δ y 而 仅 与 x 和 y 有 关 , ρ = ( Δ x ) 2 + ( Δ y ) 2 , 则 称 函 数 z = f ( x , y ) 可 微 分 , 而 A Δ x + B Δ y 称 为 在 点 ( x , y ) 的 全 微 分 , 记 为 d z 也 就 是 d z = A Δ x + B Δ y 设 函数z=f(x,y)在点(x,y)的某个领域内有定义,如果函数再点(x,y)的全增量\Delta z=f(x+\Delta x,y+\Delta y)-f(x,y)\\可以表示为\Delta z = A\Delta x+B\Delta y+o(\rho)\\其中A和B不依赖于\Delta x 和\Delta y而仅与x和y有关,\rho=\sqrt{(\Delta x)^2+(\Delta y)^2},\\则称函数z=f(x,y)可微分,而A\Delta x +B\Delta y称为在点(x,y) 的全微分,记为dz 也就是\\ dz=A\Delta x +B\Delta y z=f(x,y)(x,y)(x,y)Δz=f(x+Δx,y+Δy)f(x,y)Δz=AΔx+BΔy+o(ρ)ABΔxΔyxyρ=(Δx)2+(Δy)2 ,z=f(x,y),AΔx+BΔy(x,y)dzdz=AΔx+BΔy
    • 如果在D内的各点都可微,则称在D内可微
  • **定理1(必要条件):**如果可微则偏导存在。KaTeX parse error: Undefined control sequence: \part at position 7: \frac{\̲p̲a̲r̲t̲ ̲z}{\part x}就是上边…
    • 如何判断函数在该点可微性
      • 首先,验证在该点偏导数是否存在
      • 如果存在,再验证当 ρ → 0 时 , Δ Z − f x ( x 0 , y 0 ) Δ x − f y ( x 0 , y 0 ) Δ y ρ \rho\rightarrow 0时,\frac{\Delta Z-f_x(x_0,y_0)\Delta x-f_y(x_0,y_0)\Delta y}{\rho} ρ0ρΔZfx(x0,y0)Δxfy(x0,y0)Δy的极限是否为零。 ( ρ = Δ x 2 + Δ y 2 ) (\rho=\sqrt{\Delta x ^2+\Delta y^2}) (ρ=Δx2+Δy2 )
      • 极限为零可微,不为零不可微。
  • 定理2(充分条件):KaTeX parse error: Undefined control sequence: \part at position 24: …x, y)的偏导数\frac{\̲p̲a̲r̲t̲ ̲z}{\part x},\fr…
  • 求全微分:叠加原理,各偏微分之和。

第四节 多元复合函数的求导法则

  • **定理1(一元):**如果函数 u = φ ( t ) u = \varphi(t) u=φ(t) v = ψ ( t ) v= \psi(t) v=ψ(t)都在 t 可导,函数 z = f(u, v) 在对应点(u, v)具有连续偏导数,那么复合函数 z = f [ φ ( t ) , ψ ( t ) ] z=f[\varphi(t), \psi(t)] z=f[φ(t),ψ(t)]在点t可导,且有
    KaTeX parse error: Undefined control sequence: \part at position 22: …{dz}{dt}=\frac{\̲p̲a̲r̲t̲ ̲z}{\part u}\fra…
    称为: 全导数

  • **定理2(多元):**如果 u = φ ( x , y ) . . . . . . u=\varphi(x,y)...... u=φ(x,y)...... 且有:
    KaTeX parse error: Undefined control sequence: \part at position 8: \frac{\̲p̲a̲r̲t̲ ̲z}{\part x} = \…
    换成求对y的偏导也是一样的

  • 定理3(不一定每一个函数内部的变量都相同): u = φ ( x , y ) , v = ψ ( x ) u = \varphi(x,y),v=\psi(x) u=φ(x,y),v=ψ(x)

    那就把函数自变量与因变量之间的关系画成一棵树,每一部分的因变量都为父节点,如果该父节点拥有两个及以上的子节点,那就用偏导,只有一个子结点就用直接导数。

  • 题目只有 ω = f ( x + y + z , x y z ) \omega = f(x+y+z,xyz) ω=f(x+y+z,xyz)KaTeX parse error: Undefined control sequence: \part at position 7: \frac{\̲p̲a̲r̲t̲^2 \omega}{\par…

    tips:对每一个 f 1 ′ f'_1 f1,都会有 f ( x + y + z , x y z ) f(x+y+z,xyz) f(x+y+z,xyz)的形状。

  • 全微分形式不变性:
    KaTeX parse error: Undefined control sequence: \part at position 11: dz=\frac{\̲p̲a̲r̲t̲ ̲z}{\part u}du+\…
    全求出来。

第五节 隐函数的求导公式

  • 二元的情况下

    • 一次导数:

    d y d x = − F x F y \frac{dy}{dx}=-\frac{F_x}{F_y} dxdy=FyFx

    • 二次导数:(在一次的基础上另外自行求导,不用公式)
  • 多元的情况下:F(x, y, z) = 0

    • 求导公式:

KaTeX parse error: Undefined control sequence: \part at position 8: \frac{\̲p̲a̲r̲t̲ ̲z}{\part x} = -…

  • 雅克比的内容:会求 KaTeX parse error: Undefined control sequence: \part at position 26: …u+xv=1, 求\frac{\̲p̲a̲r̲t̲ ̲u}{\part x},\fr…
    • KaTeX parse error: Undefined control sequence: \part at position 21: …n{cases}x\frac{\̲p̲a̲r̲t̲ ̲u}{\part x}-y\f…
    • 注意这里y和x属于同级变量,对x求导的时候,(y×u)’ = 0 + y×u’

第六节 多元函数微分学的几何应用

  • 曲线的切线:
    • r = f ( t ) = ( t 2 + 1 , 4 t − 3 , 2 t 2 − 6 t ) , t ∈ R 是 一 条 曲 线 , 其 单 位 切 向 量 是 f ′ ( t ) = ( 2 t , 4 , 4 t − 6 ) r = f(t)=(t^2+1, 4t-3, 2t^2-6t),t\in R \\ 是一条曲线,其单位切向量是\\f'(t) = (2t, 4, 4t-6) r=f(t)=(t2+1,4t3,2t26t),tR线f(t)=(2t,4,4t6)
  • 曲线的切线和法平面
    • 曲线: f ( t ) = ( φ ( t ) , ψ ( t ) , ω ( t ) ) f(t)=(\varphi(t), \psi(t),\omega(t)) f(t)=(φ(t),ψ(t),ω(t))
    • 导向量: T = f ′ ( t 0 ) = ( φ ′ ( t 0 ) , ψ ′ ( t 0 ) , ω ′ ( t 0 ) ) T=f'(t_0)=(\varphi'(t_0), \psi'(t_0),\omega'(t_0)) T=f(t0)=(φ(t0),ψ(t0),ω(t0))
    • 切线方程: x − x 0 φ ′ ( t 0 ) = y − y 0 ψ ′ ( t 0 ) = z − z 0 ω ′ ( t 0 ) \frac{x-x_0}{\varphi'(t_0)}=\frac{y-y_0}{\psi'(t_0)}=\frac{z-z_0}{\omega'(t_0)} φ(t0)xx0=ψ(t0)yy0=ω(t0)zz0
    • 法平面: φ ′ ( t 0 ) ( x − x 0 ) + ψ ′ ( t ) ( y − y 0 ) + ω ′ ( t 0 ) ( z − z 0 ) \varphi'(t_0)(x-x_0)+\psi'(t)(y-y_0)+\omega'(t_0)(z-z_0) φ(t0)(xx0)+ψ(t)(yy0)+ω(t0)(zz0)
    • 如果给了的曲线方程不是上方的,而是两个曲面的交线的形式,则要使用类似雅可比的内容,具体看书本P98
  • 曲面的切平面与法线
    • 曲面: F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0
    • 曲面的法向量: n = ( F x ( x , y , z ) , F y ( x , y , z ) , F z ( x , y , z ) ) n = (F_x(x,y,z), F_y(x,y,z),F_z(x,y,z)) n=(Fx(x,y,z),Fy(x,y,z),Fz(x,y,z))
      • 法线: x − x 0 F x ( x 0 , y 0 , z 0 ) = y − y 0 F y ( x 0 , y 0 , z 0 ) = z − z 0 F z ( x 0 , y 0 , z 0 ) \frac{x-x_0}{F_x(x_0,y_0,z_0)}=\frac{y-y_0}{F_y(x_0,y_0,z_0)}=\frac{z-z_0}{F_z(x_0,y_0,z_0)} Fx(x0,y0,z0)xx0=Fy(x0,y0,z0)yy0=Fz(x0,y0,z0)zz0
    • 切平面: 同上方法平面的求法,这里使用法向量求

第七节 方向导数与梯度

  • 方向导数:KaTeX parse error: Undefined control sequence: \part at position 7: \frac{\̲p̲a̲r̲t̲ ̲f}{\part l}|_{(…
    • 三角函数的出现是因为方向向量。
  • 梯度: ∇ f ( x 0 , y 0 , z 0 ) = f x ( x 0 , y 0 , z 0 ) i + f y ( x 0 , y 0 , z 0 ) j + f z ( x 0 , y 0 , z 0 ) k \nabla f(x_0,y_0,z_0) = f_x(x_0, y_0,z_0)i+f_y(x_0,y_0,z_0)j+f_z(x_0,y_0,z_0)k f(x0,y0,z0)=fx(x0,y0,z0)i+fy(x0,y0,z0)j+fz(x0,y0,z0)k

第八节 多元函数的极值及其求法

  • **定理1(必要条件)**函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 (x_0,y_0) 具有偏导数,且在点(x_0,y_0)具有极值,则有对应偏导为零。
  • 定理2(充分条件)
    • 设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某领域内连续且有一阶二阶连续偏导数,又 f x ( x 0 , y 0 ) = 0 , f y ( x 0 , y 0 ) = 0 , 令 f x x ( x 0 , y 0 ) = A , f x y ( x 0 , y 0 ) = B , f y y ( x 0 , y 0 ) = C 1 、 当 A C − B 2 > 0 有 极 值 , A < 0 有 极 大 值 , A > 0 有 极 小 值 2 、 当 A C − b 2 < 0 , 没 有 极 值 c 、 当 A C − B 2 = 0 , 另 需 讨 论 f_x(x_0,y_0)=0,f_y(x_0,y_0)=0,\\令f_{xx}(x_0,y_0)=A ,f_{xy}(x_0,y_0)=B,f_{yy}(x_0,y_0)=C\\1、当AC-B^2>0有极值,A<0有极大值,A>0有极小值\\2、当AC-b^2<0,没有极值\\c、当AC-B^2=0,另需讨论 fx(x0,y0)=0,fy(x0,y0)=0fxx(x0y0)=A,fxy(x0,y0)=B,fyy(x0,y0)=C1ACB2>0A<0A>02ACb2<0,cACB2=0,
  • 条件极值 拉格朗日乘数法
    • 简单来说:需要以下几点内容
      • 目标函数 f ( x , y ) = 0 f(x,y)=0 f(x,y)=0
      • 条件函数 φ ( x , y ) = 0 , 带 上 λ ⇒ λ φ ( x , y ) \varphi(x,y)=0,带上\lambda \Rightarrow \lambda \varphi(x,y) φ(x,y)=0λλφ(x,y)
      • 构造方程组:分别对x求导,对y求导,对λ求导。这三组成方程组。
    • 另一种解法
    • image-20210613172509200

第十章 重积分

第一节 二重积分的概念与性质

  • 概念:
    ∬ D f ( x , y ) d x d y \underset{D}{\iint}f(x,y)dxdy Df(x,y)dxdy

  • 性质:

    1. 常数可以提到积分外
    2. 被积函数如果是1,则是对面积积分(如果是三重,则是体积)
    3. 积分区间可拆分
    4. 被积函数如果 f < g , f<g, f<g,则对应的积分也是这样的关系
    5. m < f < M       则 , ∬ m d σ < ∬ f ( x , y ) d σ < ∬ M d σ m<f<M\ \ \ \ \ 则,\iint md\sigma<\iint f(x,y)d\sigma<\iint Md\sigma m<f<M     ,mdσ<f(x,y)dσ<Mdσ
    6. 中值定理,至少存在一点,使得 ∬ D f ( x , y ) d x d y = f ( ε , η ) σ \underset{D}{\iint}f(x,y)dxdy = f(\varepsilon,\eta)\sigma Df(x,y)dxdy=f(ε,η)σ

第二节 二重积分的计算法

  • 对直角坐标计算二重积分:
    • 选择先后积分的对象(先x,还是先y。一般选择)
    • 确定上下限
    • 积!
  • 利用极坐标计算二重积分:
    • ∬ D f ( x , y ) d x d y = ∬ D f ( ρ cos ⁡ θ , ρ sin ⁡ θ ) ρ d ρ d θ \underset{D}{\iint}f(x,y)dxdy = \underset{D}{\iint}f(\rho\cos\theta,\rho \sin\theta) \rho d\rho d\theta Df(x,y)dxdy=Df(ρcosθ,ρsinθ)ρdρdθ
    • 直接换,其他不难。复习书本P149
    • **注意:**被积区域如果不是普通的圆(原点为圆心),则ρ的取值会和θ挂钩 看书:P151

第三节 三重积分

  • 利用直角坐标:

    • 积分区间找出上下限,可以先两次积分再一次积分(先二后一),注意书P163
  • 利用柱面坐标:
    d v = ρ d ρ d θ d z dv=\rho d\rho d\theta dz dv=ρdρdθdz
    变化方式和二重积分一样,但是多一个z

  • 利用球面坐标计算:

    • { x = r sin ⁡ φ cos ⁡ θ , y = r sin ⁡ φ sin ⁡ θ , z = r cos ⁡ φ . d v = d θ       r 2 d r     sin ⁡ φ d φ \begin{cases}x=r\sin\varphi\cos\theta,\\y=r\sin\varphi\sin\theta,\\z=r\cos\varphi. \end{cases}\\ dv=d\theta\ \ \ \ \ r^2dr\ \ \ \sin\varphi d\varphi x=rsinφcosθ,y=rsinφsinθ,z=rcosφ.dv=dθ     r2dr   sinφdφ

第四节 重积分的应用

  • 曲面面积:

    • A = ∬ 1 + f x 2 ( x , y ) + f y 2 ( x , y ) d x d y A=\iint\sqrt{1+f^2_x(x,y)+f^2_y(x,y)}dxdy A=1+fx2(x,y)+fy2(x,y) dxdy

      这里计算的时候能用到利用极坐标的知识

    • 利用参数方程的:书 P171

  • 质心:

    • 不均匀薄片:

    x ˉ = M y M = ∬ D x μ ( x , y ) d σ ∬ D μ ( x , y ) d σ y ˉ = M x M = ∬ D y μ ( x , y ) d σ ∬ D μ ( x , y ) d σ \bar{x}=\frac{M_y}{M}=\frac{\iint_D xμ(x,y)d\sigma}{\iint_D μ(x,y)d\sigma} \\ \bar{y}=\frac{M_x}{M}=\frac{\iint_D yμ(x,y)d\sigma}{\iint_D μ(x,y)d\sigma} xˉ=MMy=Dμ(x,y)dσDxμ(x,y)dσyˉ=MMx=Dμ(x,y)dσDyμ(x,y)dσ

    • 均匀薄片:

    x ˉ = 1 A ∬ x d σ y ˉ = 1 A ∬ y d σ 其 实 就 是 把 密 度 函 数 去 掉 \bar{x}=\frac{1}{A}\iint xd\sigma\\ \bar{y}=\frac{1}{A}\iint yd\sigma\\其实就是把密度函数去掉 xˉ=A1xdσyˉ=A1ydσ

  • 转动惯量:

I x = ∭ Ω ( y 2 + z 2 ) ρ ( x , y , z ) d v I y = ∭ Ω ( x 2 + z 2 ) ρ ( x , y , z ) d v I z = ∭ Ω ( y 2 + x 2 ) ρ ( x , y , z ) d v           I 0 = ∭ Ω ( x 2 + y 2 + z 2 ) ρ ( x , y , z ) d v I_x = \iiint_Ω (y^2+z^2)\rho(x,y,z)dv\\ I_y = \iiint_Ω (x^2+z^2)\rho(x,y,z)dv\\ I_z = \iiint_Ω (y^2+x^2)\rho(x,y,z)dv\\ \ \ \ \ \ \ \ \ \ I_0 = \iiint_Ω (x^2+y^2+z^2)\rho(x,y,z)dv Ix=Ω(y2+z2)ρ(x,y,z)dvIy=Ω(x2+z2)ρ(x,y,z)dvIz=Ω(y2+x2)ρ(x,y,z)dv         I0=Ω(x2+y2+z2)ρ(x,y,z)dv

  • 引力:
    F = ( F x , F y , F z ) = ( ∭ G ρ ( x , y , z ) ( x − x 0 ) r 3 d v , ∭ G ρ ( x , y , z ) ( y − y 0 ) r 3 d v , ∭ G ρ ( x , y , z ) ( z − z 0 ) r 3 d v ) F=(F_x,F_y,F_z)=(\iiint\frac{G\rho(x,y,z)(x-x_0)}{r^3}dv,\iiint\frac{G\rho(x,y,z)(y-y_0)}{r^3}dv,\iiint\frac{G\rho(x,y,z)(z-z_0)}{r^3}dv) F=(Fx,Fy,Fz)=(r3Gρ(x,y,z)(xx0)dv,r3Gρ(x,y,z)(yy0)dv,r3Gρ(x,y,z)(zz0)dv)
    第十章和第十一章的内容得多写点题目

第十一章 曲线积分与曲面积分

第一节 第一类曲线积分

  • 概念:$\int_L f(x, y) = {\underset{\lambda\rightarrow 0}{\lim}}\overset{n}{\underset{i=1}{\sum}}f(\xi_i, \eta_i)\Delta s_i\ \ L是积分弧段 $
  • 计算法: ∫ L f ( x , y ) d s = ∫ α β f [ ϕ ( t ) , ψ ( t ) ] ϕ ′ 2 ( t ) + ψ ′ 2 ( t )     d t ( α < β ) \int_Lf(x, y)ds = \int_\alpha^\beta f[\phi(t),\psi(t) ]\sqrt{\phi'^2(t)+\psi'^2(t)} \ \ \ dt(\alpha<\beta) Lf(x,y)ds=αβf[ϕ(t),ψ(t)]ϕ2(t)+ψ2(t)    dt(α<β)
    • 积分下限一定小于积分上限
    • 也可以扩展到空间曲线,其实就是多一个变量。

第二节 第二类曲线积分

  • 概念: ∫ L P ( x , y ) d x = lim ⁡ λ → 0 ∑ i = 1 n P ( ξ i , η i ) Δ x i ∫ L Q ( x , y ) d x = lim ⁡ λ → 0 ∑ i = 1 n Q ( ξ i , η i ) Δ y i \int _LP(x,y )dx=\underset{\lambda\rightarrow 0}{\lim}\overset{n}{\underset{i=1}{\sum}}P(\xi_i, \eta_i)\Delta x_i\\\int _LQ(x,y )dx=\underset{\lambda\rightarrow 0}{\lim}\overset{n}{\underset{i=1}{\sum}}Q(\xi_i, \eta_i)\Delta y_i LP(x,y)dx=λ0limi=1nP(ξi,ηi)ΔxiLQ(x,y)dx=λ0limi=1nQ(ξi,ηi)Δyi
    • 也可扩展到空间
    • 一般写成: ∫ L P ( x , y , z ) d x + Q ( x , y , z ) d y + R ( x , y , z ) d z 或 者 ∫ L A ( x , y , z ) d r \int _LP(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz\\或者\\\int_LA(x,y,z)dr LP(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dzLA(x,y,z)dr
  • 计算法: ∫ L P ( x , y ) d x + Q ( x , y ) d y = ∫ α β { P [ ϕ ( t ) , ψ ( t ) ] ϕ ′ ( t ) + Q [ ϕ ( t ) , ψ ( t ) ] ψ ′ ( t ) } d t \int _LP(x, y)dx +Q(x,y)dy=\int _\alpha^\beta\{P[\phi(t), \psi(t)]\phi'(t)+Q[\phi(t), \psi(t)]\psi'(t)\}dt LP(x,y)dx+Q(x,y)dy=αβ{P[ϕ(t),ψ(t)]ϕ(t)+Q[ϕ(t),ψ(t)]ψ(t)}dt
    • 把x和y换成用t表示的变量时,还要记得dx和dy也要换,所以会导致求对应的导数
    • 面对不同的代换,要看哪个更好求,有些积分起始位置到终止位置的表达式不同(不是单值函数),需要分段。
两类积分之间的联系
  • ∫ L P d x + Q d y = ∫ L ( P c o s α + Q c o s β ) d s \int _LPdx+Qdy=\int _L(Pcos\alpha+Qcos\beta)ds LPdx+Qdy=L(Pcosα+Qcosβ)ds
    • 也可以扩展到空间曲线 Γ \Gamma Γ

格林公式(关键标志一重封闭曲线转为二重积分)

  • 定义:KaTeX parse error: Undefined control sequence: \part at position 16: \iint_D (\frac{\̲p̲a̲r̲t̲ ̲Q}{\part x}-\fr…

第四节 第一类曲面积分

  • 概念: ∬ Σ f ( x , y , z ) d S = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i , ζ i ) Δ S i \underset{\Sigma}{\iint}f(x,y,z)dS = \underset{\lambda\rightarrow 0}{\lim}\overset{n}{\underset{i=1}{\sum}}f(\xi_i, \eta_i, \zeta_i)\Delta S_i Σf(x,y,z)dS=λ0limi=1nf(ξi,ηi,ζi)ΔSi
  • 计算法:KaTeX parse error: Got function '\sum' with no arguments as subscript at position 7: \iint_\̲s̲u̲m̲ ̲f(x,y,z)dS=\iin…
    • 也就是把zdS换掉,换掉后按照二重积分进行

第五节 第二类曲面积分

  • 概念: ∬ Σ f ( x , y , z ) d x d y = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i , ζ i ) Δ ( S i ) x y \underset{\Sigma}{\iint}f(x,y,z)dxdy = \underset{\lambda\rightarrow 0}{\lim}\overset{n}{\underset{i=1}{\sum}}f(\xi_i, \eta_i, \zeta_i)\Delta (S_i)_{xy} Σf(x,y,z)dxdy=λ0limi=1nf(ξi,ηi,ζi)Δ(Si)xy
    • 在哪个面上投影就dd哪个面的坐标轴
  • 计算法: ∬ Σ f ( x , y , z ) d x d y = ∬ D x y f ( x , y , z ( x , y ) ) d x d y \underset{\Sigma}{\iint}f(x,y,z)dxdy = \underset{D_{xy}}{\iint}f(x,y,z(x,y))dxdy Σf(x,y,z)dxdy=Dxyf(x,y,z(x,y))dxdy
    • 根据dxdy确定投影面
    • 还要看看正负号
两类积分之间的联系
  • ∬ P d y d z + Q d z d x + R d x d y = ∬ ( P c o s α + Q c o s β + R c o s γ ) d S \iint Pdydz+Qdzdx+Rdxdy = \iint(Pcos\alpha+Qcos\beta+Rcos\gamma)dS Pdydz+Qdzdx+Rdxdy=(Pcosα+Qcosβ+Rcosγ)dS
    • 每一道题都不一定全都来这些表达式,只来一部分。

第六节 高斯公式(将封闭积分曲面转换为三维积分)

  • 公式:KaTeX parse error: Undefined control sequence: \part at position 21: …t_\Omega(\frac{\̲p̲a̲r̲t̲ ̲P}{\part x}+\fr…
    • 这里三角函数是 Σ \Sigma Σ在点(x,y,z)处的法向量方向余弦
    • Σ \Sigma Σ Ω \Omega Ω整个边界曲面的外侧

第七节 斯托克斯公式

  • 公式:$方便记忆 \rightarrow \underset{\Sigma}{\iint}\begin{vmatrix}dydz[\cos\alpha]&dzdx[\cos\beta]&dxdy[\cos\gamma]\\frac{\part}{\part x}&\frac{\part}{\part y}&\frac{\part}{\part z}\P&Q&R \end{vmatrix}[dS]=\oint_\tau Pdx+Qdy +Rdz $
  • 1
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 《高等数学 同济 下册》是一本应用于高等数学学习的教材。这本教材是同济大学编写的,内容涵盖了高等数学中的重要知识点和应用技巧。 首先,本教材的第一部分是多元函数微分学。这部分主要介绍了多元函数的定义、极限、连续性和偏导数等重要概念,并给出了一系列典型的多元函数求导法则。此外,还涵盖了隐函数和逆函数导数的求解方法。 第二部分是多元函数积分学。在这一部分中,教材详细介绍了重积分、曲线积分和曲面积分的概念与计算方法。还包括了对向量场的散度定理和环量定理的讲解,并给出了一些实际问题的应用例题。 第三部分是无穷级数。这一部分包括了数项级数、幂级数、函数项级数等内容。教材对于级数的性质、收敛与发散的判定方法进行了详细的讲解,并给出了一些重要的级数求和公式。 此外,《高等数学 同济 下册》还讨论了常微分方程、概率论与数理统计、数值计算方法以及向量代数与空间解析几何等内容。这些内容对于进一步深入理解和应用高等数学概念都具有重要意义。 总而言之,高等数学是大学数学的基础课程,对于理工科学生来说是非常重要的一门学科。《高等数学 同济 下册》作为一本权威教材,提供了各种高等数学知识点的系统讲解和典型例题,有助于学生夯实数学基础、拓宽数学思维,并能在实际问题中应用所学知识。无论是作为学生的学习资料,还是教师的教学辅助工具,《高等数学 同济 下册》都具有很高的参考价值。 ### 回答2: 《高等数学同济下册》是同济大学数学系编写的一本教材。该教材主要囊括了高等数学的各个领域,包括极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、重积分、曲线积分与曲面积分、无穷级数等内容。 这本教材的编写秉承着严谨、系统和深入的原则,力求为读者提供高质量的数学教学内容。同时,这本教材也注重理论与实践相结合,将数学应用在实际问题的求解中。它不仅给出了数学定理的证明过程,还通过大量的例题与习题,帮助读者理解和掌握数学知识。 《高等数学同济下册》的特点在于其丰富的内容和深入的解释。通过详细的讲解和推导,读者能够更加清晰地理解数学概念和原理。值得一提的是,该教材也融入了大量的实例和应用,使抽象的数学理论更具有实际意义。 总之,这本教材对于学习高等数学的同学来说是一部非常有用的工具书。它可以帮助读者建立起坚实的数学基础,提高数学思维能力和问题解决能力。无论是作为教师的辅助教材,还是作为学生的自学用书,都能发挥重要的作用,推动数学学习的深入发展。 ### 回答3: 《高等数学同济)》下册是一本面向高等院校数学专业学生的教材。它是同济大学数学系编写的,经过多年的使用和改进已经成为了广大学生喜爱的经典教材之一。 《高等数学同济)》下册内容较上册更加深入和复杂,包括了多元函数与偏导数、多元函数的微分法及其应用、曲线积分与曲面积分等内容。此外,它还包括了向量代数与空间解析几何、无穷级数、常微分方程、高阶线性常微分方程等重要的数学知识点。 此教材的编写特点是理论与实践相结合,循序渐进,逻辑严密。每个章节都由基本概念、原理与公式的推导以及习题等多个部分组成,使同学们能够逐步理解和掌握相应的数学知识。 与其他教材相比,《高等数学同济)》下册具有以下几个显著特点:一是思维上更加强调几何直观和物理直观,给予了同学们更多的示例和图形来加深对概念和原理的理解;二是注重培养分析问题和解决问题的能力,通过丰富的习题和应用实例来帮助学生掌握数学思维方法;三是注重实际应用,将数学与其它学科的联系紧密结合,使同学们能够更好地理解数学的应用和意义。 总的来说,《高等数学同济)》下册是一本经典的数学教材,对于高等院校的数学专业学生来说是必备的学习资料。通过阅读和学习这本教材,同学们可以系统地掌握高等数学的重要理论和方法,提高数学思维和解决问题的能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JamePrin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值