b站教学案例

初学者可能无法直接找到视频的url,因为b站采取的是音频和视频分开的模式(.m4s).

找到url

这里我先随便找一个url

https://www.bilibili.com/video/BV15x41167kg?from=search&seid=2782960511092264812&spm_id_from=333.337.0.0

删减一下:

https://www.bilibili.com/video/BV15x41167kg

开打chrome开发者工具,播放视频的同时,发现以下包被慢慢加载出来了。
在这里插入图片描述
然后点击这个包,分析一下。

https://upos-sz-mirrorkodo.bilivideo.com/upgcxcode/89/32/19123289/19123289_da3-1-30033.m4s?e=ig8euxZM2rNcNbdlhoNvNC8BqJIzNbfqXBvEqxTEto8BTrNvN0GvT90W5JZMkX_YN0MvXg8gNEV4NC8xNEV4N03eN0B5tZlqNxTEto8BTrNvNeZVuJ10Kj_g2UB02J0mN0B5tZlqNCNEto8BTrNvNC7MTX502C8f2jmMQJ6mqF2fka1mqx6gqj0eN0B599M=&uipk=5&nbs=1&deadline=1641743855&gen=playurlv2&os=kodobv&oi=3078708767&trid=0de42e0be49a4dc69609cb1035cbf0cbu&platform=pc&upsig=2850f621cc720503c5852104e95d1b27&uparams=e,uipk,nbs,deadline,gen,os,oi,trid,platform&mid=699964101&bvc=vod&nettype=0&orderid=0,3&agrr=0&bw=33019&logo=80000000

在这里插入图片描述

在这里插入图片描述

直接访问对应的url,会显示不存在,但是我们很清楚就是从这个url请求得到的视频数据

这样的话其实只要在headers里添加referer字段就行了。
接下来进行全局搜索:
https://upos-sz-mirrorkodo.bilivideo.com/
结果如下:
在这里插入图片描述
跟进。
在这里插入图片描述
将相关的代码格式化一下。
格式化网址:https://www.sojson.com/simple_json.html
在这里插入图片描述
在这里插入图片描述
这样就足够清楚了。

思路就是提取video,audio的baseUrl然后请求相应的数据,保存。

代码如下:

import requests,re,json
def getVideo_and_Audio_Url(start_url,headers):
    response=requests.get(start_url,headers).content.decode()
    playinfo = re.findall("__playinfo__=(.*?)</script>",response)[0]
    data_json = json.loads(playinfo)
    video_url = data_json["data"]["dash"]["video"][0]["base_url"]
    audio_url = data_json["data"]["dash"]["audio"][0]["base_url"]
    return video_url,audio_url

def download_video_and_audio(video_url,audio_url):
    video_content = requests.get(video_url,headers=headers).content
    audio_content = requests.get(audio_url,headers=headers).content

    with open("video.mp4","wb") as f:
        f.write(video_content)
    with open("audio.mp3","wb") as f:
        f.write(audio_content)
 
    print("下载完成")
    
if __name__ == '__main__':
    start_url = "https://www.bilibili.com/video/BV15x41167kg"
    headers = {
        "Referer": "https://www.bilibili.com/video/BV15x41167kg?from=search&seid=2782960511092264812&spm_id_from=333.337.0.0",
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.69 Safari/537.36"
    }
    video,audio = getVideo_and_Audio_Url(start_url,headers=headers)
    download_video_and_audio(video,audio)
    

运行完代码的结果:
在这里插入图片描述
在这里插入图片描述
确实完成了目前。

接下里需要将得到的音频和视频合成,当然也需要提取视频的名字。

使用ffmpeg即可。(需要配置环境)

cmd = r"ffmpeg -i {}/{}.mp4 -i {}/{}.mp3 -c:v copy -c:a aac -strict experimental {}/{}.mp4".format(os_path,vTitle,os_path,vTitle,os_path,vTitle_0)

            subprocess.run(cmd,shell=True)

在这里插入图片描述
完成!

### PyTorch 教学案例与示例代码 以下是基于提供的引用内容和专业知识整理的关于 PyTorch 的教学案例及其示例代码: #### 数据加载与处理 PyTorch 提供了 `torch.utils.data.DataLoader` 和 `torch.utils.data.Dataset` 工具来简化数据加载的过程[^2]。这些工具可以帮助开发者高效地管理训练数据。 ```python from torch.utils.data import Dataset, DataLoader class CustomDataset(Dataset): def __init__(self, data, labels): self.data = data self.labels = labels def __len__(self): return len(self.data) def __getitem__(self, idx): sample = { 'data': self.data[idx], 'label': self.labels[idx] } return sample dataset = CustomDataset(data=[1, 2, 3], labels=['a', 'b', 'c']) dataloader = DataLoader(dataset, batch_size=1, shuffle=True) for batch in dataloader: print(batch) ``` #### 安装环境配置 在 Windows 下可以使用 Conda 方式安装 PyTorch 及其依赖项,同时指定 CUDA 版本以支持 GPU 加速[^1]。 ```bash conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia ``` #### 基础模型定义与训练 以下是一个简单的线性回归模型实现[^3],展示了如何定义网络结构并完成基本的训练流程。 ```python import torch import torch.nn as nn import torch.optim as optim # 定义模型 class LinearModel(nn.Module): def __init__(self): super(LinearModel, self).__init__() self.linear = nn.Linear(1, 1) # 输入维度为1,输出维度为1 def forward(self, x): return self.linear(x) model = LinearModel() # 损失函数与优化器 criterion = nn.MSELoss() optimizer = optim.SGD(model.parameters(), lr=0.01) # 训练数据 inputs = torch.tensor([[1.0], [2.0], [3.0]]) targets = torch.tensor([[2.0], [4.0], [6.0]]) # 训练循环 for epoch in range(500): model.train() outputs = model(inputs) loss = criterion(outputs, targets) optimizer.zero_grad() loss.backward() optimizer.step() print(f'Final weights: {list(model.parameters())}') ``` #### 设计理念对比 相较于 Keras,PyTorch 更加灵活,在动态计算图的支持上表现突出[^4]。这种灵活性使得 PyTorch 成为了研究型项目的首选框架之一。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值