二叉搜索树原理及操作

原理

二叉搜索树(Binary Search Tree BST
又称为二叉排序树,它是一颗空树或者具有以下性质:

  • 它的左子树不为空,则左子树上所有节点的值都小于根节点的值
  • 它的右子树不为空,则右子树上所有节点的值都大于根节点的值
  • 它的左右子树也是二叉搜索树

简单来说:
每个结点, 节点左子树中所有的key值,都小于节点的key值; 节点右子树中所有的key值,都大于节点的key值
在这里插入图片描述
所以:二叉搜索树的中序遍历,一定有序

构建二叉搜索树

节点:

public class Node {
    public int key;
    public Node left;
    public Node right;

    public Node(int key) {
        this.key = key;
    }

    @Override
    public String toString() {
        return "Node{" +
                "val=" + key +
                '}';
    }
}

二叉搜索树

public class BSTree {
    public Node root;

    public BSTree() {
        this.root = null;
    }
}

查找

查找,过程从root进入,当root为空时候,返回false,当root不为空时,key的值比root.key大,则朝右走,否则则往左走。一直走到叶子结束。

 //查找
    public boolean find(int key) {
        if (root == null) {
            return false;
        }
        Node cur = root;
        while (cur != null) {
            if (cur.key == key) {
                return true;
            } else if (cur.key < key) {
                cur = cur.right;
            } else {
                cur = cur.left;
            }
        }
        return false;
    }

插入

先判断是否是空树,如果是,则直接将root=node;在进行查找,和上面查找过程相似,需要找到适合插入的位置,结点中不能重复,所以当cur.key=key时候,抛出异常,找到合适的位置,将结点插入

    //插入
    public void insert(int key) {
        Node node = new Node(key);
        if (root == null) {
            root = node;
            return;
        }
        Node cur = root;
        Node parent = null;
        while (cur != null) {
            if (cur.key == key) {
                throw new RuntimeException("");
            } else if (cur.key > key) {
                parent = cur;
                cur = cur.left;
            } else {
                parent = cur;
                cur = cur.right;
            }
        }

        if (parent.key < key) {
            parent.right = node;
        } else {
            parent.left = node;
        }
    }

删除

当要删除一个二叉搜索树的时候,那么我们该如何操作呢?
当然我们不能直接删除,我们需要删除完成后,还要保证二叉搜索的性质

思路:

  1. 如果不存在,不删除
  2. 存在
    1、叶子结点,直接删除
    2、只有一个孩子结点,让孩子继承地位
    3、有两个孩子,替换删除
    找到key的后继(比key大的最后一个goat)
    goat最后一定没有左孩子
    替换,删除goat。

即:

一、找到待删除结点
1、node.left = null
包含node.right == null 和 node.right != null
    (1) node没有父节点  ——> root = node.right
    (2) node是父节点左孩子——> parent.left = node.right
    (3) node是右孩子 ——>parent.right = node.right
2、node.right == null && node.left != null
     和1一样,镜像处理
3、left 和 right 都 != null 
    (1) 找到node.key的后继  goat
	    node.right 然后一直向左走,直到 left == null 停下
    (2) node.key = goat.key (替换)
    (3) 删除 goat结点
goat 一定没有左孩子,一定有parent
    if(goat 的parent == node){
	    goat的parent.right = goat.right;
    }else{
	    goat的parent.left == goat.right;
    }

实现:

 //删除
    public boolean remove(int key) {
        Node cur = root;
        Node parent = null;
        while (cur != null) {
            if (cur.key == key) {
                //删除
                removeNode(parent, cur);
                return true;
            } else if (key < cur.key) {
                parent = cur;
                cur = cur.left;
            } else {
                parent = cur;
                cur = cur.right;
            }
        }
        return false;
    }

    //删除操作
    private void removeNode(Node parent, Node cur) {
        if (cur.left == null) {
            if (cur == root) {
                root = cur.right;
            } else if (parent.left == cur) {
                parent.left = cur.right;
            } else {
                parent.right = cur.right;
            }
        } else if (cur.right == null) {
            if (cur == root) {
                root = cur.left;
            } else if (parent.left == cur) {
                parent.left = cur.left;
            } else {
                parent.right = cur.left;
            }
        } else {
            Node goat = cur.right;
            Node goatParent = cur;
            while (goat.left != null) {
                goatParent = goat;
                goat = goat.left;
            }
            //替换
            cur.key = goat.key;
            //删除
            if (goatParent == cur) {
                goatParent.right = goat.right;
            } else {
                goatParent.left = goat.right;
            }
        }
    }

测试:

public class Test {
    private static void inorder(Node node) {
        if (node != null) {
            inorder(node.left);
            System.out.print(node.key + " ");
            inorder(node.right);
        }
    }

    public static void main(String[] args) {
        BSTree tree1 = new BSTree();
        int[] keys1 = {5, 3, 7, 2, 4, 6, 8, 1, 9};
        for (int key : keys1) {
            tree1.insert(key);
        }
        inorder(tree1.root);
        tree1.remove(7);
        //preorder(tree1.root);
        System.out.println();
        inorder(tree1.root);
        System.out.println();
        System.out.println(tree1.find(3));
    }
}

在这里插入图片描述

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无赖H4

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值