torch.mean(dim=-2)张量操作

torch.mean(dim=-2) 是PyTorch中的张量操作,用于计算张量沿着指定维度的平均值。让我们来解释并举一个例子:

假设有一个三维张量 x,形状为 (2, 3, 4),内容如下:

 

python

import torch x = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], [[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]]])

现在我们使用 torch.mean(dim=-2) 来计算 x 沿着倒数第二个维度的平均值:

 

python

mean_values = torch.mean(x, dim=-2) print(mean_values)

输出结果将是:

 

tensor([[ 5., 6., 7., 8.], [17., 18., 19., 20.]])

解释:

  • 对于第一个二维子张量 [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]],沿着倒数第二个维度计算平均值得到 [5, 6, 7, 8]
  • 对于第二个二维子张量 [[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]],沿着倒数第二个维度计算平均值得到 [17, 18, 19, 20]

因此,torch.mean(dim=-2) 返回了一个形状为 (2, 4) 的张量,其中每一行代表了对应二维子张量沿着倒数第二个维度的平均值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值