torch.mean(dim=-2)
是PyTorch中的张量操作,用于计算张量沿着指定维度的平均值。让我们来解释并举一个例子:
假设有一个三维张量 x
,形状为 (2, 3, 4)
,内容如下:
python
import torch x = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], [[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]]])
现在我们使用 torch.mean(dim=-2)
来计算 x
沿着倒数第二个维度的平均值:
python
mean_values = torch.mean(x, dim=-2) print(mean_values)
输出结果将是:
tensor([[ 5., 6., 7., 8.], [17., 18., 19., 20.]])
解释:
- 对于第一个二维子张量
[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
,沿着倒数第二个维度计算平均值得到[5, 6, 7, 8]
。 - 对于第二个二维子张量
[[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]]
,沿着倒数第二个维度计算平均值得到[17, 18, 19, 20]
。
因此,torch.mean(dim=-2)
返回了一个形状为 (2, 4)
的张量,其中每一行代表了对应二维子张量沿着倒数第二个维度的平均值。