监督分类 (supervised classification)又称训练场地法,是以建立统计识别函数为理论基础,依据典型样本训练方法进行分类的技术。即根据已知训练区提供的样本,通过选择特征参数,求出特征参数作为决策规则,建立判别函数以对待分类影像进行的图像分类,是模式识别的一种方法。要求训练区域具有典型性和代表性。判别准则若满足分类精度要求,则此准则成立;反之,需重新建立分类的决策规则,直至满足分类精度要求为止。常用算法有:判别分析、最大似然分析、特征分析、序贯分析和图形识别等。
一、训练样本的选择
1、在主菜单中,选择File→Open Image File,打开分类图像;
2、选择图像视图窗口菜单Overlay→Region of Interest命令;
3、在Image视图窗口中选择Overlay→Region of Interest。在ROI Tool窗口中,选择ROI_Type→Polygon;
4、在Window一栏中选择感兴趣区域绘制窗口,这里选择Image,然后在Image窗体中绘制一个多边形区域,然后右键单击两次结束,并在ROI Name中定义其类型。
5、选择Options→Compute ROI Separability进行训练样本可分离性计算;
6、在Select Input File for Separability窗口中选择计算训练可分离性的图像文件;