ENVI CLASSIC图像分类(二)----监督分类

本文详细介绍了ENVI软件中监督分类的过程,包括训练样本的选择、最大似然法分类、结果验证(如混淆矩阵)以及分类后处理策略,如Majority/Minority分析和矢量化转换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

监督分类 (supervised classification)又称训练场地法,是以建立统计识别函数为理论基础,依据典型样本训练方法进行分类的技术。即根据已知训练区提供的样本,通过选择特征参数,求出特征参数作为决策规则,建立判别函数以对待分类影像进行的图像分类,是模式识别的一种方法。要求训练区域具有典型性和代表性。判别准则若满足分类精度要求,则此准则成立;反之,需重新建立分类的决策规则,直至满足分类精度要求为止。常用算法有:判别分析、最大似然分析、特征分析、序贯分析和图形识别等。

一、训练样本的选择

1、在主菜单中,选择File→Open Image File,打开分类图像;

2、选择图像视图窗口菜单Overlay→Region of Interest命令;

3、在Image视图窗口中选择Overlay→Region of Interest。在ROI Tool窗口中,选择ROI_Type→Polygon;

4、在Window一栏中选择感兴趣区域绘制窗口,这里选择Image,然后在Image窗体中绘制一个多边形区域,然后右键单击两次结束,并在ROI Name中定义其类型。

5、选择Options→Compute ROI Separability进行训练样本可分离性计算;

6、在Select Input File for Separability窗口中选择计算训练可分离性的图像文件;

### ENVI 软件的分类功能及其使用 ENVI 是一款强大的遥感图像处理软件,其核心功能之一就是图像分类。以下是关于 ENVI分类功能及相关操作的具体说明: #### 一、ENVI 中的图像分类概述 ENVI 提供多种图像分类方法,主要包括监督分类和非监督分类两种方式[^1]。 - **监督分类**:基于已知的地物类别训练样本进行分类。常用算法有最大似然法(Maximum Likelihood)、最小距离法(Minimum Distance)以及支持向量机(SVM)等。 - **非监督分类**:无需先验知识,通过聚类算法自动划分地物类别。常用的非监督分类方法为 K-Means 算法。 这些分类方法能够帮助用户快速实现对遥感影像中不同地物类型的区分与识别。 #### ENVI 分类功能的操作流程 在 ENVI 中执行图像分类的一般过程如下: 1. 打开待分类的遥感影像文件。 2. 对于监督分类,需手动选取感兴趣区域作为训练样本;对于非监督分类,则设置聚类数及其他参数。 3. 运行选定的分类算法并生成分类结果图层。 4. 可视化显示分类结果,并对其进行精度评估。 具体到 ENVI5.6 版本,在经典模式下可以通过菜单栏依次选择 `Classification -> Supervised` 或者 `Unsupervised Classification` 来启动相应模块[^2]。 #### 三、代码示例——调用 IDL 实现简单分类 虽然大多数情况下可以直接利用图形界面完成分类任务,但对于高级用户来说也可以借助内置编程环境 (IDL) 编写脚本来自动化这一过程。下面给出一段简单的 IDL 示例程序用于演示如何加载数据集并通过 SVM 方法实施监督分类: ```idl ; 加载输入影像 file = DIALOG_PICKFILE(/READ, TITLE='Select Input Image') img = READ_IMAGE(file) ; 定义训练区路径 roi_file = DIALOG_PICKFILE(/READ, TITLE='Select ROI File') rois = ENVIRasterFromROI(roi_file) ; 创建分类器对象 classifier = OBJ_NEW('ENVISupervisedClassifier', img, 'SupportVectorMachine') ; 添加训练样区至分类器 FOREACH roi IN rois DO classifier->AddTrainingData, roi ; 应用分类器得到最终成果 classified_image = classifier->Classify() ; 输出保存新创建的结果栅格 output_filename = PATH_JOIN(DIRECTORY(), 'svm_classified.img') WRITE_ENVI_FILE, classified_image, output_filename=output_filename ``` 此段代码展示了从读取原始影像到最后导出分类产物的整体逻辑链条。 #### 四、总结 综上所述,ENVI 不仅提供了直观便捷的人机交互手段来辅助开展各类复杂的遥感数据分析工作,而且允许开发者深入挖掘其潜力从而满足特定需求下的定制开发诉求。无论是初学者还是资深研究者都能从中受益匪浅。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值