ENVI CLASSIC图像分类(二)----监督分类

本文详细介绍了ENVI软件中监督分类的过程,包括训练样本的选择、最大似然法分类、结果验证(如混淆矩阵)以及分类后处理策略,如Majority/Minority分析和矢量化转换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

监督分类 (supervised classification)又称训练场地法,是以建立统计识别函数为理论基础,依据典型样本训练方法进行分类的技术。即根据已知训练区提供的样本,通过选择特征参数,求出特征参数作为决策规则,建立判别函数以对待分类影像进行的图像分类,是模式识别的一种方法。要求训练区域具有典型性和代表性。判别准则若满足分类精度要求,则此准则成立;反之,需重新建立分类的决策规则,直至满足分类精度要求为止。常用算法有:判别分析、最大似然分析、特征分析、序贯分析和图形识别等。

一、训练样本的选择

1、在主菜单中,选择File→Open Image File,打开分类图像;

2、选择图像视图窗口菜单Overlay→Region of Interest命令;

3、在Image视图窗口中选择Overlay→Region of Interest。在ROI Tool窗口中,选择ROI_Type→Polygon;

4、在Window一栏中选择感兴趣区域绘制窗口,这里选择Image,然后在Image窗体中绘制一个多边形区域,然后右键单击两次结束,并在ROI Name中定义其类型。

5、选择Options→Compute ROI Separability进行训练样本可分离性计算;

6、在Select Input File for Separability窗口中选择计算训练可分离性的图像文件;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值