统计推断 --潘登同学的计量经济学笔记
文章目录
单个总体参数的检验
t检验
检验步骤
- 原假设 H 0 : β j = 0 H_0: \beta_j=0 H0:βj=0
- 确定显著性水平 α \alpha α
- 计算t统计量
t ≡ β j ^ − 0 s e ( β j ^ ) t \equiv \frac{\hat{\beta_j}-0}{se(\hat{\beta_j})} t≡se(βj^)βj^−0
其中的 β j = ρ x y ^ σ x ^ σ y ^ ( 一 元 情 形 ) , β = ( X T X ) − 1 X T Y ( 多 元 情 形 ) ; s e ( β j ^ ) = σ ^ S S T x ( 一 元 情 形 ) , σ ^ = S S R n − 2 \beta_j=\hat{\rho_{xy}}\frac{\hat{\sigma_x}}{\hat{\sigma_y}}(一元情形),\beta = (X^TX)^{-1}X^TY(多元情形); se(\hat{\beta_j}) = \frac{\hat{\sigma}}{\sqrt{SST_x}}(一元情形),\hat{\sigma}=\frac{SSR}{n-2} βj=ρxy^σy^σx^(一元情形),β=(XTX)−1XTY(多元情形);se(βj^)=SSTxσ^(一元情形),σ^=n−2SSR - 确定临界值 t α 2 ( n − k − 1 ) 双 侧 , t α ( n − k − 1 ) 单 侧 t_{\frac{\alpha}{2}}(n-k-1)双侧,t_{\alpha}(n-k-1)单侧 t2α(n−k−1)双侧,tα(n−k−1)单侧
- 作出推断,如果t统计量大于临界值则拒绝原假设,否则不拒绝
p值法
除了与临界值比较之外,还可以直接计算t统计量的p值,对于双侧来说
p
=
P
(
∣
t
j
∣
>
∣
t
α
2
(
n
−
k
−
1
)
∣
)
p = P(|t_j|>|t_{\frac{\alpha}{2}}(n-k-1)|)
p=P(∣tj∣>∣t2α(n−k−1)∣)
P值越小越拒绝,P值一旦小于显著性水平就拒绝原假设
置信区间法
检验步骤
- 原假设 H 0 : β j = 0 H_0: \beta_j=0 H0:βj=0
- 确定显著性水平 α \alpha α
- 利用
β
j
^
−
β
j
s
e
(
β
j
^
)
\frac{\hat{\beta_j}-\beta_j}{se(\hat{\beta_j})}
se(βj^)βj^−βj服从自由度为n-k-1的t分布的事实,构造置信区间
[ β j ^ − t α 2 ( n − k − 1 ) s e ( β j ^ ) , β j ^ + t α 2 ( n − k − 1 ) s e ( β j ^ ) ] [\hat{\beta_j} - t_{\frac{\alpha}{2}}(n-k-1)se(\hat{\beta_j}), \hat{\beta_j} + t_{\frac{\alpha}{2}}(n-k-1)se(\hat{\beta_j})] [βj^−t2α(n−k−1)se(βj^),βj^+t2α(n−k−1)se(βj^)] - 作出统计推断, 如果置信区间套住的0,那就不拒绝原假设,否则拒绝原假设
注意
对于一个95%置信区间,如果不拒绝原假设,能否说他以95%的概率包含真值?
不能, 一个置信区间要么包含真值要么不包含,95%只是说在100次中,有95次包含了真值
多个线性约束的检验
F检验
检验步骤
- 原假设 H 0 : β 3 = 0 , β 4 = 0 , β 5 = 0 , … H_0: \beta_3=0,\beta_4=0,\beta_5=0,\ldots H0:β3=0,β4=0,β5=0,…
- 确定显著性水平 α \alpha α
- 构造F统计量,分别用受约束模型(去掉了
x
3
,
x
4
,
x
5
,
…
x_3,x_4,x_5,\ldots
x3,x4,x5,…)和不受约束模型(原模型)
F ≡ S S R r − S S R u r S S R u r ⋅ n − k − 1 q F \equiv \frac{SSR_r - SSR_{ur}}{SSR_{ur}} \cdot \frac{n-k-1}{q} F≡SSRurSSRr−SSRur⋅qn−k−1
其中q为 x 3 , x 4 , x 5 , … x_3,x_4,x_5,\ldots x3,x4,x5,…的数量 - 确定临界值 F α ( q , n − k − 1 ) ( 只 有 单 侧 ) F_{\alpha}(q,n-k-1)(只有单侧) Fα(q,n−k−1)(只有单侧)
- 作出统计推断,一旦大于临界值就拒绝原假设,否则不拒绝
F检验的 R 2 R^2 R2
F统计量还可以写成以下形式
F
=
R
u
r
2
−
R
r
2
1
−
R
u
r
2
⋅
n
−
k
−
1
q
F = \frac{R^2_{ur}-R^2_{r}}{1-R^2_{ur}} \cdot \frac{n-k-1}{q}
F=1−Rur2Rur2−Rr2⋅qn−k−1
其中
R
u
r
2
R^2_{ur}
Rur2是原模型的
R
2
R^2
R2
调整 R 2 R^2 R2
除了利用F检验来进行嵌套模型的选择外, 还可以利用调整
R
2
R^2
R2对非嵌套模型(当然嵌套模型也可以)进行选择
R
ˉ
2
=
1
−
S
S
R
S
S
T
⋅
n
−
1
n
−
k
−
1
\bar{R}^2 = 1 - \frac{SSR}{SST} \cdot \frac{n-1}{n-k-1}
Rˉ2=1−SSTSSR⋅n−k−1n−1
也可以根据
R
2
R^2
R2来计算
R
ˉ
2
=
1
−
(
1
−
R
2
)
⋅
n
−
1
n
−
k
−
1
\bar{R}^2 = 1 - (1-R^2)\cdot \frac{n-1}{n-k-1}
Rˉ2=1−(1−R2)⋅n−k−1n−1
p值法
F检验也可以用P值法,与上面操作的一致
回归整体显著
特别地,当原假设中包含了所有参数
β
1
,
⋯
,
β
k
\beta_1,\cdots,\beta_k
β1,⋯,βk时,也就是检验所有解释变量是否解释了被解释变量(或者
R
2
R^2
R2显著异于0的时候)
F
=
R
2
1
−
R
2
⋅
n
−
k
−
1
k
F = \frac{R^2}{1-R^2} \cdot \frac{n-k-1}{k}
F=1−R2R2⋅kn−k−1
大样本检验
需要注意的是: 前面的t检验与F检验是要满足MLR.1-5假设的,其中一个重要假设就是同方差性,而一旦不满足同方差性就不再适用; 但是在大样本下仍然适用,除此之外还有拉格朗日乘数(LM)统计量
联合检验LM统计量
检验步骤
- 原假设 H 0 : β 3 = 0 , β 4 = 0 , β 5 = 0 , … H_0: \beta_3=0,\beta_4=0,\beta_5=0,\ldots H0:β3=0,β4=0,β5=0,…
- 将y对排除约束后的自变量进行回归,并保存残差 u ~ \tilde{u} u~
- 将 u ~ \tilde{u} u~对所有自变量进行回归,得到 R 2 R^2 R2,记为 R u 2 R^2_u Ru2
- 计算LM统计量
L M = n R u 2 LM = n R^2_u LM=nRu2 - 根据显著性水平 α \alpha α,确定临界值 χ α 2 ( q ) \chi_{\alpha}^2(q) χα2(q)
- LM统计量大于临界值就拒绝,否则不拒绝