【计量经济学】统计推断

这篇博客详细介绍了计量经济学中的统计推断方法,包括单个总体参数的t检验、使用p值法和置信区间法进行检验,以及多个线性约束的F检验。此外,还探讨了F检验与R2的关系,以及在大样本情况下的LM统计量用于联合检验。内容深入浅出,适合经济学和统计学的学习者参考。
摘要由CSDN通过智能技术生成

统计推断 --潘登同学的计量经济学笔记

单个总体参数的检验

t检验

检验步骤

  1. 原假设 H 0 : β j = 0 H_0: \beta_j=0 H0:βj=0
  2. 确定显著性水平 α \alpha α
  3. 计算t统计量
    t ≡ β j ^ − 0 s e ( β j ^ ) t \equiv \frac{\hat{\beta_j}-0}{se(\hat{\beta_j})} tse(βj^)βj^0
    其中的 β j = ρ x y ^ σ x ^ σ y ^ ( 一 元 情 形 ) , β = ( X T X ) − 1 X T Y ( 多 元 情 形 ) ; s e ( β j ^ ) = σ ^ S S T x ( 一 元 情 形 ) , σ ^ = S S R n − 2 \beta_j=\hat{\rho_{xy}}\frac{\hat{\sigma_x}}{\hat{\sigma_y}}(一元情形),\beta = (X^TX)^{-1}X^TY(多元情形); se(\hat{\beta_j}) = \frac{\hat{\sigma}}{\sqrt{SST_x}}(一元情形),\hat{\sigma}=\frac{SSR}{n-2} βj=ρxy^σy^σx^(),β=(XTX)1XTY();se(βj^)=SSTx σ^(),σ^=n2SSR
  4. 确定临界值 t α 2 ( n − k − 1 ) 双 侧 , t α ( n − k − 1 ) 单 侧 t_{\frac{\alpha}{2}}(n-k-1)双侧,t_{\alpha}(n-k-1)单侧 t2α(nk1)tα(nk1)
  5. 作出推断,如果t统计量大于临界值则拒绝原假设,否则不拒绝

p值法

除了与临界值比较之外,还可以直接计算t统计量的p值,对于双侧来说
p = P ( ∣ t j ∣ > ∣ t α 2 ( n − k − 1 ) ∣ ) p = P(|t_j|>|t_{\frac{\alpha}{2}}(n-k-1)|) p=P(tj>t2α(nk1))

P值越小越拒绝,P值一旦小于显著性水平就拒绝原假设

置信区间法

检验步骤

  1. 原假设 H 0 : β j = 0 H_0: \beta_j=0 H0:βj=0
  2. 确定显著性水平 α \alpha α
  3. 利用 β j ^ − β j s e ( β j ^ ) \frac{\hat{\beta_j}-\beta_j}{se(\hat{\beta_j})} se(βj^)βj^βj服从自由度为n-k-1的t分布的事实,构造置信区间
    [ β j ^ − t α 2 ( n − k − 1 ) s e ( β j ^ ) , β j ^ + t α 2 ( n − k − 1 ) s e ( β j ^ ) ] [\hat{\beta_j} - t_{\frac{\alpha}{2}}(n-k-1)se(\hat{\beta_j}), \hat{\beta_j} + t_{\frac{\alpha}{2}}(n-k-1)se(\hat{\beta_j})] [βj^t2α(nk1)se(βj^),βj^+t2α(nk1)se(βj^)]
  4. 作出统计推断, 如果置信区间套住的0,那就不拒绝原假设,否则拒绝原假设

注意 对于一个95%置信区间,如果不拒绝原假设,能否说他以95%的概率包含真值?

不能, 一个置信区间要么包含真值要么不包含,95%只是说在100次中,有95次包含了真值

多个线性约束的检验

F检验

检验步骤

  1. 原假设 H 0 : β 3 = 0 , β 4 = 0 , β 5 = 0 , … H_0: \beta_3=0,\beta_4=0,\beta_5=0,\ldots H0:β3=0,β4=0,β5=0,
  2. 确定显著性水平 α \alpha α
  3. 构造F统计量,分别用受约束模型(去掉了 x 3 , x 4 , x 5 , … x_3,x_4,x_5,\ldots x3,x4,x5,)和不受约束模型(原模型)
    F ≡ S S R r − S S R u r S S R u r ⋅ n − k − 1 q F \equiv \frac{SSR_r - SSR_{ur}}{SSR_{ur}} \cdot \frac{n-k-1}{q} FSSRurSSRrSSRurqnk1
    其中q为 x 3 , x 4 , x 5 , … x_3,x_4,x_5,\ldots x3,x4,x5,的数量
  4. 确定临界值 F α ( q , n − k − 1 ) ( 只 有 单 侧 ) F_{\alpha}(q,n-k-1)(只有单侧) Fα(q,nk1)()
  5. 作出统计推断,一旦大于临界值就拒绝原假设,否则不拒绝

F检验的 R 2 R^2 R2

F统计量还可以写成以下形式
F = R u r 2 − R r 2 1 − R u r 2 ⋅ n − k − 1 q F = \frac{R^2_{ur}-R^2_{r}}{1-R^2_{ur}} \cdot \frac{n-k-1}{q} F=1Rur2Rur2Rr2qnk1
其中 R u r 2 R^2_{ur} Rur2是原模型的 R 2 R^2 R2

调整 R 2 R^2 R2

除了利用F检验来进行嵌套模型的选择外, 还可以利用调整 R 2 R^2 R2对非嵌套模型(当然嵌套模型也可以)进行选择
R ˉ 2 = 1 − S S R S S T ⋅ n − 1 n − k − 1 \bar{R}^2 = 1 - \frac{SSR}{SST} \cdot \frac{n-1}{n-k-1} Rˉ2=1SSTSSRnk1n1
也可以根据 R 2 R^2 R2来计算
R ˉ 2 = 1 − ( 1 − R 2 ) ⋅ n − 1 n − k − 1 \bar{R}^2 = 1 - (1-R^2)\cdot \frac{n-1}{n-k-1} Rˉ2=1(1R2)nk1n1

p值法

F检验也可以用P值法,与上面操作的一致

回归整体显著

特别地,当原假设中包含了所有参数 β 1 , ⋯   , β k \beta_1,\cdots,\beta_k β1,,βk时,也就是检验所有解释变量是否解释了被解释变量(或者 R 2 R^2 R2显著异于0的时候)
F = R 2 1 − R 2 ⋅ n − k − 1 k F = \frac{R^2}{1-R^2} \cdot \frac{n-k-1}{k} F=1R2R2knk1

大样本检验

需要注意的是: 前面的t检验与F检验是要满足MLR.1-5假设的,其中一个重要假设就是同方差性,而一旦不满足同方差性就不再适用; 但是在大样本下仍然适用,除此之外还有拉格朗日乘数(LM)统计量

联合检验LM统计量

检验步骤

  1. 原假设 H 0 : β 3 = 0 , β 4 = 0 , β 5 = 0 , … H_0: \beta_3=0,\beta_4=0,\beta_5=0,\ldots H0:β3=0,β4=0,β5=0,
  2. 将y对排除约束后的自变量进行回归,并保存残差 u ~ \tilde{u} u~
  3. u ~ \tilde{u} u~对所有自变量进行回归,得到 R 2 R^2 R2,记为 R u 2 R^2_u Ru2
  4. 计算LM统计量
    L M = n R u 2 LM = n R^2_u LM=nRu2
  5. 根据显著性水平 α \alpha α,确定临界值 χ α 2 ( q ) \chi_{\alpha}^2(q) χα2(q)
  6. LM统计量大于临界值就拒绝,否则不拒绝
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PD我是你的真爱粉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值