共享投入型关联两阶段生产系统的网络DEA效率测度与分解复现

本文介绍了陈凯华和官建成在《共享投入型关联两阶段生产系统的网络DEA效率测度与分解》中的DEA模型,并详细解释了模型的规划式和效率计算方法,特别提及了CRS和VRS下的结果比较,指出DMU10和DMU11在处理后的结果更准确。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天推出的是一个关于2011年陈凯华和官建成的《共享投入型关联两阶段生产系统的网络DEA效率测度与分解》这篇

文献中建立的DEA模型结果的复现。

该文提出的考虑中间产出的共享投入的两阶段网络DEA模型,在规模报酬不变时,其规划式如下:

E k = max ⁡ ∑ p = 1 q W p 1 Z p k + ∑ r = 1 s U r Y r k  s.t.  { ∑ i = 1 m π i 1 X i k + ∑ i = 1 m V i 2 X i k − ∑ i = 1 m π i 2 X i k + ∑ p = 1 q W p 2 Z p k = 1 ∑ i = 1 m π i 1 X i j − ∑ p = 1 q W p 1 Z p j ≥ 0 , j = 1 , 2 , ⋯   , n ∑ i = 1 m V i 2 X i j − ∑ i = 1 m π i 2 X i j + ∑ p = 1 q W p 2 Z p j − ∑ r = 1 s U r Y r j ≥ 0 , j = 1 , 2 , ⋯   , n π i 2 ≥ V i 2 ≥ ε ; π i 1 , W p 1 , W p 2 , U r ≥ ε , i = 1 , 2 , ⋯   , m \begin{array}{l}E_{k}=\max \sum_{p=1}^{q} W_{p}^{1} Z_{p k}+\sum_{r=1}^{s} U_{r} Y_{r k} \\\text { s.t. }\left\{\begin{array}{l}\sum_{i=1}^{m} \pi_{i}^{1} X_{i k}+\sum_{i=1}^{m} V_{i}^{2} X_{i k}-\sum_{i=1}^{m} \pi_{i}^{2} X_{i k}+\sum_{p=1}^{q} W_{p}^{2} Z_{p k}=1 \\\sum_{i=1}^{m} \pi_{i}^{1} X_{i j}-\sum_{p=1}^{q} W_{p}^{1} Z_{p j} \geq 0, j=1,2, \cdots, n \\\sum_{i=1}^{m} V_{i}^{2} X_{i j}-\sum_{i=1}^{m} \pi_{i}^{2} X_{i j}+\sum_{p=1}^{q} W_{p}^{2} Z_{p j}-\sum_{r=1}^{s} U_{r} Y_{r j} \geq 0, j=1,2, \cdots, n \\\pi_{i}^{2} \geq V_{i}^{2} \geq \varepsilon ; \pi_{i}^{1}, W_{p}^{1}, W_{p}^{2}, U_{r} \geq \varepsilon, i=1,2, \cdots, m\end{array}\right.\end{array} Ek=maxp=1qWp1Zpk+r=1sUrYrk s.t.  i=1mπi1Xik+i=1mVi2Xiki=1mπi2Xik+p=1qWp2Zpk=1i=1mπi1Xijp=1qWp1Zpj0,j=1,2,,ni=1mVi2Xiji=1mπi2Xij+p=1qWp2Zpjr=1sUrYrj0,j=1,2,,nπi2Vi2ε;πi1,Wp1,Wp2,Urε,i=1,2,,m

上述线性规划描述了以投入为导向的 DMU_k 整体技术效率测度模型. 借助规划可获得决策变量 α i ( α i = π i 2 / V i 2 ) \alpha_i(\alpha_i=\pi_i^2/V_i^2) αi(αi=πi2/Vi2) V i 1 ( V i 1 = π i 1 / α i ) V_i^1(V_i^1=\pi_i^1/\alpha_i) Vi1(Vi1=πi1/αi) V i 2 V_i^2 Vi2 W p 1 W_p^1 Wp1 W p 2 W_p^2 Wp2 U r U_r Ur 的最优解组合后,可进一步通过下述公式计算内部第一个子过程和第二个生产过程的技术效率值.

E k 1 = ∑ p = 1 q w p 1 Z p k ∑ i = 1 m v i 1 α i X i k = ∑ p = 1 q W p 1 Z p k ∑ i = 1 m V i 1 α i X i k E_k^1=\frac{\sum\limits_{p=1}^qw_p^1Z_{pk}}{\sum\limits_{i=1}^mv_i^1\alpha_iX_{ik}}=\frac{\sum\limits_{p=1}^qW_p^1Z_{pk}}{\sum\limits_{i=1}^mV_i^1\alpha_iX_{ik}} Ek1=i=1mvi1αiXikp=1qwp1Zpk=i=1mVi1αiXikp=1qWp1Zpk

E k 2 = ∑ r = 1 s u r Y r k ∑ i = 1 m v i 2 ( 1 − α i ) X i k + ∑ p = 1 q w p 2 Z p k = ∑ r = 1 s U r Y r k ∑ i = 1 m V i 2 ( 1 − α i ) X i k + ∑ p = 1 q W p 2 Z p k E_k^2=\frac{\sum_{r=1}^su_rY_{rk}}{\sum_{i=1}^mv_i^2(1-\alpha_i)X_{ik}+\sum_{p=1}^qw_p^2Z_{pk}}=\frac{\sum_{r=1}^sU_rY_{rk}}{\sum_{i=1}^mV_i^2(1-\alpha_i)X_{ik}+\sum_{p=1}^qW_p^2Z_{pk}} Ek2=i=1mvi2(1αi)Xik+p=1qwp2Zpkr=1surYrk=i=1mVi2(1αi)Xik+p=1qWp2Zpkr=1sUrYrk

当规模报酬可变时,其规划时及第一、第二阶段效率值如下:

E ˉ k = max ⁡ ∑ p = 1 q W p 1 Z p k + ∑ r = 1 s U r Y r k − μ k A − μ k B  s.t.  { ∑ i = 1 m π i 1 X i k + ∑ i = 1 m V i 2 X i k − ∑ i = 1 m π i 2 X i k + ∑ p = 1 q W p 2 Z p k = 1 ∑ i = 1 m π i 1 X i j − ( ∑ p = 1 q W p 1 Z p j − μ k A ) ≥ 0 , j = 1 , 2 , ⋯   , n ∑ i = 1 m V i 2 X i j − ∑ i = 1 m π i 2 X i j + ∑ p = 1 q W p 2 Z p j − ( ∑ r = 1 s U r Y r j − μ k B ) ≥ 0 , j = 1 , 2 , ⋯   , n V i i 2 ≥ p i 2 ≥ ε ; π i 1 , W p 1 , W p 2 , U r ≥ ε , i = 1 , 2 , ⋯   , m \begin{array}{l}\bar{E}_{k}=\max \sum_{p=1}^{q} W_{p}^{1} Z_{p k}+\sum_{r=1}^{s} U_{r} Y_{r k}-\mu_{k}^{A}-\mu_{k}^{B} \\\text { s.t. }\left\{\begin{array}{l}\sum_{i=1}^{m} \pi_{i}^{1} X_{i k}+\sum_{i=1}^{m} V_{i}^{2} X_{i k}-\sum_{i=1}^{m} \pi_{i}^{2} X_{i k}+\sum_{p=1}^{q} W_{p}^{2} Z_{p k}=1 \\\sum_{i=1}^{m} \pi_{i}^{1} X_{i j}-\left(\sum_{p=1}^{q} W_{p}^{1} Z_{p j}-\mu_{k}^{A}\right) \geq 0, j=1,2, \cdots, n \\\sum_{i=1}^{m} V_{i}^{2} X_{i j}-\sum_{i=1}^{m} \pi_{i}^{2} X_{i j}+\sum_{p=1}^{q} W_{p}^{2} Z_{p j}-\left(\sum_{r=1}^{s} U_{r} Y_{r j}-\mu_{k}^{B}\right) \geq 0, j=1,2, \cdots, n \\Vi_{i}^{2} \geq p_{i}^{2} \geq \varepsilon ; \pi_{i}^{1}, W_{p}^{1}, W_{p}^{2}, U_{r} \geq \varepsilon, i=1,2, \cdots, m\end{array}\right.\end{array} Eˉk=maxp=1qWp1Zpk+r=1sUrYrkμkAμkB s.t.  i=1mπi1Xik+i=1mVi2Xiki=1mπi2Xik+p=1qWp2Zpk=1i=1mπi1Xij(p=1qWp1ZpjμkA)0,j=1,2,,ni=1mVi2Xiji=1mπi2Xij+p=1qWp2Zpj(r=1sUrYrjμkB)0,j=1,2,,nVii2pi2ε;πi1,Wp1,Wp2,Urε,i=1,2,,m
上述规划描述了以投入为导向的 DMU k _k k 整体纯技术效率测度模型,当决策变量 α i ( α i = π i 2 / V i 2 ) \alpha_i(\alpha_i=\pi_i^2/V_i^2) αi(αi=πi2/Vi2) V i 1 ( V i 1 ) V_i^1(V_i^1) Vi1(Vi1) = π i 1 / α i ) 、 V i 2 、 W p 1 、 W p 2 、 U r 、 μ k A =\pi_i^1/\alpha_i)、V_i^2、W_p^1、W_p^2、U_r、\mu_k^A =πi1/αi)Vi2Wp1Wp2UrμkA μ k B \mu_k^B μkB 的借助规划 获得最优解组合后,可通过下述公式 计算被测评的生产系统 DMU k _k k 内部第一和第二生产过程的纯技术效率值.

E ˉ k 1 = ∑ p = 1 q w p 1 Z p k − μ k 1 ∑ i = 1 m v i 1 α i X i k = ∑ p = 1 q W p 1 Z p k − μ k A ∑ i = 1 m V i 1 α i X i k E ˉ k 2 = ∑ r = 1 s u r Y r k − μ k 2 ∑ i = 1 m v i 2 ( 1 − α i ) X i k + ∑ p = 1 q w p 2 Z p k = ∑ r = 1 s U r Y r k − μ k B ∑ i = 1 m V i 2 ( 1 − α i ) X i k + ∑ p = 1 q W p 2 Z p k \begin{array}{c}\bar{E}_{k}^{1}=\frac{\sum_{p=1}^{q} w_{p}^{1} Z_{p k}-\mu_{k}^{1}}{\sum_{i=1}^{m} v_{i}^{1} \alpha_{i} X_{i k}}=\frac{\sum_{p=1}^{q} W_{p}^{1} Z_{p k}-\mu_{k}^{A}}{\sum_{i=1}^{m} V_{i}^{1} \alpha_{i} X_{i k}} \\\bar{E}_{k}^{2}=\frac{\sum_{r=1}^{s} u_{r} Y_{r k}-\mu_{k}^{2}}{\sum_{i=1}^{m} v_{i}^{2}\left(1-\alpha_{i}\right) X_{i k}+\sum_{p=1}^{q} w_{p}^{2} Z_{p k}}=\frac{\sum_{r=1}^{s} U_{r} Y_{r k}-\mu_{k}^{B}}{\sum_{i=1}^{m} V_{i}^{2}\left(1-\alpha_{i}\right) X_{i k}+\sum_{p=1}^{q} W_{p}^{2} Z_{p k}}\end{array} Eˉk1=i=1mvi1αiXikp=1qwp1Zpkμk1=i=1mVi1αiXikp=1qWp1ZpkμkAEˉk2=i=1mvi2(1αi)Xik+p=1qwp2Zpkr=1surYrkμk2=i=1mVi2(1αi)Xik+p=1qWp2Zpkr=1sUrYrkμkB

关于模型的更多细节,可以参考论文。为了方便计算,我们实现了该模型,CRS和VRS下程序和论文的结果对比:

在这里插入图片描述
在这里插入图片描述

值的一提的是,作者给出的CRS结果中,DMU10的结果和DMU9的结果相同,这里应该是处理结果时出了问题,根据原始数据,和DMU10数据相近的是DMU11,在VRS的结果中也正是如此,DMU10和DMU11的结果非常接近。

如果需要该模型,请联系微信canglang12002

官网:http://www.gongju128.cn/?p=636

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值