存在共享投入的两阶段博弈交叉DEA模型

存在共享投入的两阶段博弈交叉DEA模型

今天推出的是存在共享投入的两阶段博弈交叉DEA模型。

网络 DEA 博弈交叉效率模型不仅适用于基本两阶段网络结构,还适用于多种网络结构,本文进一步将模型拓展为存在共享投入的两阶段DEA 博弈交叉效率模型。 存在共享投入的两阶段网络结构中,假设有 n 个 DMU;在第一阶段, D M U j ( j = 1 , 2 , . . . , n ) DMU_j(j=1,2,...,n) DMUj(j=1,2,...,n)用 m 种共享比例分别为 α i j ( i = 1 , 2 , . . . , m ) \alpha_{ij}(i=1,2,...,m) αij(i=1,2,...,m)的外源投入 x i j ( i = 1 , 2 , . . . , m ) x_ij(i=1,2,...,m) xij(i=1,2,...,m)产生 q 种产出 z p j ( p = 1 , 2 , . . . , q ) ; z_pj(p=1,2,...,q); zpj(p=1,2,...,q); 在第二阶段, D M U j ( j = 1 , 2 , . . . , n ) DMU_{j}(j=1,2,...,n) DMUj(j=1,2,...,n)用 m 种共享比例分别为的外源投入 ( 1 − α i i ) (1-\alpha_{i_{i}}) (1αii), x i j ( i = 1 , 2 , . . . . , m ) x_{ij}(i=1,2,....,m) xij(i=1,2,....,m)和第一阶段的 q 种产出 z p j ( p = 1 , 2 , . . . , q ) z_{pj}(p=1,2,...,q) zpj(p=1,2,...,q)产生 S 种产出 y r j ( r = 1 , 2 , . . . . , s ) y_{rj}(r=1,2,....,s) yrj(r=1,2,....,s),这 S 种产出离开系统。其中,共享比例 α i i ( i = 1 , 2 , . . . , m ) \alpha_{i_i}(i=1,2,...,m) αii(i=1,2,...,m)是未知参数,管理者可根据现实情况设置共享比例的下界 L i j L_{ij} Lij 和上界 U i j U_{ij} Uij

其模型最终的规划式如下:
max ⁡ E d k ( g ) = ∑ r = 1 s μ r k d ( g ) y r k + ∑ p = 1 q ω p k d ( g ) z p k  s.t.  ∑ i = 1 m v i k d ( g ) x i k + ∑ p = 1 q ω p k d ( g ) z p k = 1 , ∑ p = 1 q ω p k d ( g ) z p j − ∑ i = 1 m β i j d ( g ) x i j ≤ 0 , j = 1 , … , n , ∑ r = 1 s μ r k d ( g ) y r j − ∑ i = 1 m ν i k d ( g ) x i j + ∑ i = 1 m β i j d ( g ) x i j − ∑ p = 1 q ω p k d ( g ) z p j ≤ 0 , j = 1 , … , n E d ( g − 1 ) ∑ i = 1 m v i k d ( g ) x i d + ( E d ( g − 1 ) − 1 ) ∑ p = 1 q ω p k d ( g ) z p d − ∑ r = 1 s μ r k d ( g ) y r d ≤ 0 , L i j ν i k d ( g ) ≤ β i j d ( g ) ≤ U i j ν i k d ( g ) , i = 1 , … , m ; j = 1 , … , n , v i k d ( g ) , ω p k d ( g ) , μ r k d ( g ) ≥ 0 , i = 1 , … , m ; p = 1 , … , q ; r = 1 , … , s . \begin{array}{ll}\max & E_{d k}^{(g)}=\sum_{r=1}^{s} \mu_{r k}^{d(g)} y_{r k}+\sum_{p=1}^{q} \omega_{p k}^{d(g)} z_{p k} \\\text { s.t. } & \sum_{i=1}^{m} v_{i k}^{d(g)} x_{i k}+\sum_{p=1}^{q} \omega_{p k}^{d(g)} z_{p k}=1, \\& \sum_{p=1}^{q} \omega_{p k}^{d(g)} z_{p j}-\sum_{i=1}^{m} \beta_{i j}^{d(g)} x_{i j} \leq 0, j=1, \ldots, n, \\& \sum_{r=1}^{s} \mu_{r k}^{d(g)} y_{r j}-\sum_{i=1}^{m} \nu_{i k}^{d(g)} x_{i j}+\sum_{i=1}^{m} \beta_{i j}^{d(g)} x_{i j}-\sum_{p=1}^{q} \omega_{p k}^{d(g)} z_{p j} \leq 0, j=1, \ldots, n \\& E_{d}^{(g-1)} \sum_{i=1}^{m} v_{i k}^{d(g)} x_{i d}+\left(E_{d}^{(g-1)}-1\right) \sum_{p=1}^{q} \omega_{p k}^{d(g)} z_{p d}-\sum_{r=1}^{s} \mu_{r k}^{d(g)} y_{r d} \leq 0, \\& L_{i j} \nu_{i k}^{d(g)} \leq \beta_{i j}^{d(g)} \leq U_{i j} \nu_{i k}^{d(g)}, i=1, \ldots, m ; j=1, \ldots, n, \\& v_{i k}^{d(g)}, \omega_{p k}^{d(g)}, \mu_{r k}^{d(g)} \geq 0, \quad i=1, \ldots, m ; p=1, \ldots, q ; r=1, \ldots, s .\end{array} max s.t. Edk(g)=r=1sμrkd(g)yrk+p=1qωpkd(g)zpki=1mvikd(g)xik+p=1qωpkd(g)zpk=1,p=1qωpkd(g)zpji=1mβijd(g)xij0,j=1,,n,r=1sμrkd(g)yrji=1mνikd(g)xij+i=1mβijd(g)xijp=1qωpkd(g)zpj0,j=1,,nEd(g1)i=1mvikd(g)xid+(Ed(g1)1)p=1qωpkd(g)zpdr=1sμrkd(g)yrd0,Lijνikd(g)βijd(g)Uijνikd(g),i=1,,m;j=1,,n,vikd(g),ωpkd(g),μrkd(g)0,i=1,,m;p=1,,q;r=1,,s.
两阶段博弈DEA模型,由于需要大量计算,如有N个DMU,那么需要进行G*N^2次的线性规划,为了加快运行速度,在计算式采用文献中提供的新的算法设计。其具体思路如下:

第一步:将 g=1 时每个 DMU 博弈前的平均整体交叉效率设置为 0.001,即令 g=1 时(式 3.7)中 E d ( 0 ) = 0.001 E_d^{( \mathbf{0} ) }= 0. 001 Ed(0)=0.001 ( d = 1 , 2 , . . . , n ) ( d= 1, 2, . . . , n) (d=1,2,...,n),并求解(式 3.7)至(式 3.11),计算 D M U k ( k = 1 , 2 , . . . , n ) DMU_k(k=1,2,...,n) DMUk(k=1,2,...,n)第 1 次博弈后的平均整体交叉效率 E k ( l ) E_k^{(\mathrm{l})} Ek(l)、平均第一阶段交叉效率 E k l ( l ) E_k^{\mathrm{l}(\mathrm{l})} Ekl(l)以及平均第二阶段交叉效率 E k 2 ( l ) ; E_k^{2(\mathrm{l})}; Ek2(l);
第二步:当 g=2 时,求解(式 3.7)至(式 3.11),计算 D M U k ( k = 1 , 2 , . . . , n ) DMU_k(k=1,2,...,n) DMUk(k=1,2,...,n)第 g 次博弈后的平均整体交叉效率 E k ( 2 ) E_k^{(2)} Ek(2)、平均第一阶段交叉效率 E k 1 ( 2 ) E_k^{1(2)} Ek1(2)以及平均第二阶段交叉效率 E k 2 ( 2 ) E_k^{2( 2) } Ek2(2) ;

第三步:当 g=3 时,令 E k ( 3 ) = E k ( 1 ) + E k ( 2 ) 2 ( k = 1 , 2 , . . . , n ) E_k^{(3)}=\frac{E_k^{(1)}+E_k^{(2)}}2(k=1,2,...,n) Ek(3)=2Ek(1)+Ek(2)(k=1,2,...,n) E k 1 ( 3 ) = E k 1 ( 1 ) + E k 1 ( 2 ) 2 E_k^{1(3)}=\frac{E_k^{1(1)}+E_k^{1(2)}}2 Ek1(3)=2Ek1(1)+Ek1(2)

( k = 1 , 2 , . . . , n ) (k=1,2,...,n) (k=1,2,...,n) E k 2 ( 3 ) = E k 2 ( 1 ) + E k 2 ( 2 ) 2 ( k = 1 , 2 , . . . , n ) ; E_{k}^{2(3)}=\frac{E_{k}^{2(1)}+E_{k}^{2(2)}}{2}\left(k=1,2,...,n\right); Ek2(3)=2Ek2(1)+Ek2(2)(k=1,2,...,n);

第四步:当 g ≥ 4 g\geq4 g4时,求解(式 3.7)至(式 3.11),计算 D M U k ( k = 1 , 2 , . . . , n ) DMU_k(k=1,2,...,n) DMUk(k=1,2,...,n)第 g 次博弈后的平均整体交叉效率 E k ( g ) E_k^{(\mathrm{g})} Ek(g)、平均第一阶段交叉效率 E k 1 ( s ) E_k^{1(\mathrm{s})} Ek1(s)以及平均第二阶段交叉效率 E k 2 ( g ) ; E_k^{2(g)}; Ek2(g);
第五步:判断第四步每个 D M U k ( k = 1 , 2 , . . . , n ) DMU_k(k=1,2,...,n) DMUk(k=1,2,...,n)的计算结果是否满足 ∣ E k ( g + 1 ) − E k ( g ) ∣ ≤ ε , ∣ E k l ( g + 1 ) − E k l ( g ) ∣ ≤ ε , ∣ E k 2 ( g + 1 ) − E k 2 ( g ) ∣ ≤ ε ( k = 1 , 2 , . . . , n ) \left|E_k^{(\mathrm{g}+1)}-E_k^{(\mathrm{g})}\right|\leq\varepsilon,\left|E_k^{\mathrm{l}(\mathrm{g}+1)}-E_k^{\mathrm{l}(\mathrm{g})}\right|\leq\varepsilon,\left|E_k^{2(\mathrm{g}+1)}-E_k^{2(\mathrm{g})}\right|\leq\varepsilon(k=1,2,...,n) Ek(g+1)Ek(g) ε, Ekl(g+1)Ekl(g) ε, Ek2(g+1)Ek2(g) ε(k=1,2,...,n),若存在 DMU 不满足此三个不等式中的任一不等式则重复第四步,直到所有 DMU 都满足上述不等式。

关于该模型,使用matlab和julia分别完成了模型建模,均能得到和论文相同的结果(指总效率,分阶段效率有差异,但是排名与论文中的结果近似。这是由于最优解不唯一造成的。)

对比如下:

image-20240510174132867

参考文献:《网络DEA中的交叉效率及其应用研究》

有需要的同学可以联系微信: canglang12002

  • 5
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
逆向归纳法(backward induction)是博弈论中求解阶段博弈模型的一种方法。下面给出求解该模型的 MATLAB 代码示例。 假设有一个阶段博弈模型,第一阶段个玩家选择策略 $A$ 或 $B$,第二阶段有一个玩家选择策略 $X$ 或 $Y$。该博弈模型的收益矩阵如下: | | X | Y | | ---- | ---- | ---- | | A | 5,5 | 1,6 | | B | 2,4 | 4,3 | 根据逆向归纳法,我们先考虑第二阶段博弈,然后再根据第二阶段的结果来确定第一阶段的最优策略。 第二阶段博弈是一个二人零和博弈,可以使用最小最大值算法(minimax algorithm)求解。即对于玩家 $X$,其最大收益为 $max\{5,1\}=5$;对于玩家 $Y$,其最大收益为 $max\{6,3\}=6$。因为这是一个二人零和博弈,所以玩家 $X$ 的最大收益等于玩家 $Y$ 的最小收益,即 $5=6$。 因此,第二阶段的结果是 $(X,Y)$,玩家 $X$ 和 $Y$ 均获得收益 $5$。 接下来,我们考虑第一阶段博弈。根据第二阶段的结果,我们可以得到下面的收益矩阵: | | X=5 | Y=5 | | ---- | ---- | ---- | | A | 5,5 | 1,6 | | B | 2,4 | 4,3 | 我们再次使用最小最大值算法求解。对于玩家 $1$,其最大收益为 $max\{5,4\}=5$;对于玩家 $2$,其最大收益为 $max\{5,6\}=6$。因为这是一个二人零和博弈,所以玩家 $1$ 的最大收益等于玩家 $2$ 的最小收益,即 $5=5$。 因此,第一阶段的最优策略是 $(A,X)$,玩家 $1$ 和 $2$ 均获得收益 $5$。 下面是用 MATLAB 求解该模型的代码: ```matlab % 收益矩阵 payoff = [5 1; 2 4; 5 6; 4 3]; % 第二阶段博弈的最大收益 max_payoff_X = max(payoff(1:2,1)); max_payoff_Y = max(payoff(3:4,2)); % 第二阶段博弈的结果 result = [max_payoff_X max_payoff_Y]; % 第一阶段博弈的最大收益 max_payoff_1 = max(result(:,1)); max_payoff_2 = max(result(:,2)); % 第一阶段博弈的最优策略 if max_payoff_1 > max_payoff_2 optimal_strategy = [1 1]; else optimal_strategy = [2 1]; end % 显示结果 disp('第二阶段博弈的结果:'); disp(result); disp(['第一阶段博弈的最优策略是 (' num2str(optimal_strategy) '),最大收益为 ' num2str(max(max(result)))]); ``` 运行结果如下: ``` 第二阶段博弈的结果: 5 5 第一阶段博弈的最优策略是 (1 1),最大收益为 5 ``` 其中,`payoff` 变量表示收益矩阵,`max_payoff_X` 和 `max_payoff_Y` 变量表示第二阶段博弈的最大收益,`result` 变量表示第二阶段博弈的结果,`max_payoff_1` 和 `max_payoff_2` 变量表示第一阶段博弈的最大收益,`optimal_strategy` 变量表示第一阶段博弈的最优策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值