数据包络分析-加性网络DEA分解

本文探讨了一种两阶段网络DEA模型——加性网络DEA(additivetwo-stagenetworkDEA),该模型在效率分解上不同于传统方法。在第二阶段存在额外投入的情况下,系统的效率不再由各阶段效率的乘积决定,而是通过加权平均来确定。文章介绍了模型的线性转换过程,并提出了一种通过固定α值,迭代k来求解非线性模型的方法。通过实例展示了数据包络分析在处理复杂系统效率评估问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据包络分析-加性网络DEA分解

这篇文章要介绍的是2017年的一篇两阶段网络DEA文章,文献名字如下:
在这里插入图片描述

这篇文章跟我的上一篇很相似,只是在效率分解上有区别,在编程上更复杂一点。具体内容如下:

additive two-stage network DEA

首先,仍然是介绍网络,这里我们只说第二种类型的情况,也就是在第二阶段有另外的投入,图示如下:

在这里插入图片描述
接下来,很自然的写出各个阶段的效率:
在这里插入图片描述
本文的系统效率不再是两个阶段效率的乘积,而是加权平均:
在这里插入图片描述
根据这个目标函数,得到模型如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值