直流仿真是其他仿真的基础,只有在完成直流仿真、确定电路和系统直流工作点的情况下,才能进行其他仿真验证,可以说直流仿真是所有其它仿真的先决条件。
1. 基于模板的 BJT 直流仿真
ADS的直流仿真实验:
在仿真控制中可以由用户设置直流仿真时进行扫描方式(线性扫描、中心扫描、每频扫描等),通过BJT放大电路来解释基本操作和流程:在层次化中建设一个可以调用的放大器子电路,在仿真放大器中输出BJT器件的直流参数曲线,即BJT三极管的IC曲线对直流变量进行扫描,并打印输出数据。
1、设置工作空间
点击创建工作空间,Ads在2011以后都是工作空间取代了项目。
2、建立原理图
3、插入BJT组件和模型,在Device-BJT里面选出三极管和三极管模型
4、连接好电路图
双击BJT_MODEL模型修改参数
修改这些参数Bf=Beta,Ise=0.019e-2,Vaf=50,并且可见,display前面打勾。
5、添加pin,在书上是的版本中为port,但是在2020版本中是pin,点击下面红色的,可以分别写为E、B、C
6、如果要修改symbol的名字,就是我们新建的这个元件的符号。File->Design Parameters
7、新建一个symbol,Window->Symbol
修改symbol的符号,即外观,按照下面的步骤来,并保存。
这里一定要注意pin的引脚顺序要和原理图中的一致,我当时没有一致检查了好久都没有仿真成功,当检查一致之后才成功了。生成的Symbol会自动有一个顺序,如果不一致删掉了之后用Insert->pin进行修改。
修改之后的顺序要对应上。
8、用新建的模型进行电路仿真,接下来新建一个原理图(前面已经说过了怎么新建),新建原理图之后,Insert->template->ads_templates:BJT_curve_tracer
添加模板
9、添加我们建好的三极管
找到原来的工作空间,并将原来的模型导入
连线,并设置好IBB和VCE的参数,设置起始值和步进值,如下图:
因为这个模板中很多设置已经设置好了,所以,直接运行仿真就可以看到效果。
10、开始仿真
也可以在菜单栏中选择Simulate->Simulate
同样也可以按F7进行开始仿真,仿真的结果如下。
2. 非模板自定义控件仿真
建立仿真从第8步开始还可以,把这些控件单独拖出来,并单独设置进行下面的步骤。
1、新建原理图,在元件面板“Simulation-DC”中拖出“DC”、“PrmSwp”、“Dis Temp”,这里用来建立DC的仿真控件
2、三极管仿真,需要IBB和VCE,于是就在“Source-Freq Domin”中选择电源“V_DC”和“I_DC”
3、需要监测基极电流,这里要在“Probe Component”中选择一个电流探测器“I_Probe”
4、最重要的是从我们的建的模型中选择我们建的三极管
5、连线画图
6、对电压源电流源进行设置,因为我需要将电压源电流源进行扫描,所以把Idc设置为IBB,Vdc设置为VCE,点击进去进行设置就行。
因为有了IBB和VCE这两个变量,所以就需要定义两个变量,点击,并对其进行赋值,添加之后点击Apply,OK。
7、对直流控制器“Simulation-DC”进行设置电压的值,扫描的是VCE,方式是线性扫描,扫描的开始电压是0V,停止电压5V,步进是0.1V,点击OK
8、设置“Prm Swp”继续添加扫描的参数,设置扫描的参数是IBB,线性扫描,起始步进电流分别进行设置,如下。
然后再选择”Simulation”,选择你是针对什么进行仿真,在第7步中的直流DC仿真控件的名字是”DC1”,所以要针对DC1直流仿真控制器进行参数扫描。最后点击”OK”
8、对显示控件进行设置,双击Disp Temp控件,在弹出的对话框中点击“Browse install templates”
选择”BJT Curve trace”
点击“ADD”->OK即可。
最后的原理图是这样的
点击仿真
发现什么都没有
我观察纵坐标写的是IC.i,而在整个原理图中没有出现IC这个东西,所以我把它改为了“I_Probe1.i”
于是就出现了和上面的同样的效果
好了,今天的ADS的学习记录就到这里了,因为以前没有学过,而且参考书是针对2009的,而我用的是2020,照着书上来做不出来,有点慢,但是记录的都是我实践过的,希望对大家有帮助。
以上信息转载至微信公众号:菜鸟硬件工程师小摩的成长日记
https://mp.weixin.qq.com/s/iQ1aps5W5cMGTy7VoySXww
3. 实验结果分析
BJT参数中的Beta
以上设定的 NPN 型 - BJT 管的增益 Beta (hFE) 定义为集电极电流 (Ic) 与基极电流 (Ib) 之比,在特定的集电极-发射极电压 (Vce) 和集电极电流 (Ic) 条件下:
Beta (hFE)
=
I
C
I
B
\text{Beta (hFE)} = \frac{I_C}{I_B}
Beta (hFE)=IBIC
在这个仿真实验中,Beta=120
意味着,在理想情况下,当BJT工作在放大区时,集电极电流将是基极电流的120倍。
仿真放大倍数与实际设置不符
- 模型参数:
Beta=120
是BJT_test
这个BJT模型的一个核心参数。ADS仿真器会使用这个值以及其他模型参数(如果定义了的话)来计算BJT在不同偏置条件下的行为。 - 曲线追踪: 这个电路是一个BJT特性曲线追踪器。
I_DC
(SRC2) 提供基极电流IBB
,这个电流值会通过ParamSweep
进行扫描 (从20uA到200uA,步进20uA)。V_DC
(SRC1) 提供集电极-发射极电压VCE
,这个电压值会通过DC
扫描控制器DC1
进行扫描 (从0V到5V,步进0.1V)。I_Probe
(IC) 用来测量集电极电流Ic
。
- 结果预期: 通过扫描不同的
IBB
和VCE
,并测量对应的Ic
,可以绘制出BJT的输出特性曲线(Ic vs Vce,以IBB为参数)。Beta=120
这个参数将直接影响这些曲线的幅度和形状。例如,理想状态下对于给定的IBB
,Ic
的理论值大约是120 * IBB
(在饱和区和击穿区之外)。 - 实际结果:实际仿真得到的BJT直流电流放大倍数(Beta,即 Ic/Ib)在 90 - 100 倍,而不是之前简单模型中可能设置的更高值(例如120) ——其原因主要是因为晶体管在理想条件下的最大正向直流电流增益。然而,实际晶体管的电流增益 β (或 hFE) 并不是一个在所有工作条件下都保持恒定的值。它会受到晶体管实际工作点 (即具体的 IC 和 VCE 值) 以及温度等因素的显著影响。
IC (集电极电流) 的影响:Beta通常在很小和很大的IC下都会下降。
VCE (集电极-发射极电压) 的影响:厄尔利效应 (Early Effect)。由厄尔利电压 Vaf 描述,它使得 Ic 随 Vce 增加而增加,从而导致测量到的Beta随 Vce 增加而增加(在放大区)。
温度的影响:Beta通常随温度升高而增加
补充:厄尔利效应 (Early Effect)详解
厄尔利效应,又称基区宽度调制效应 (Base-Width Modulation),是双极结型晶体管 (BJT) 中的一个重要物理现象,它描述了集电极-基极反向偏置电压 ( V C B V_{CB} VCB)(或者近似地,集电极-发射极电压 ( V C E V_{CE} VCE))如何影响有效基区宽度,并进而影响晶体管的特性。该效应由詹姆斯·厄尔利 (James M. Early) 首次发现并阐释。
1. 物理机制
在 NPN 晶体管中,若发射结正偏、集电结反偏,则电子从发射极注入基区,穿越基区后被集电极吸收。
- 当集电极电压 V C E V_{CE} VCE 增加时,集电结反偏程度加深 → 耗尽层向基区扩展 → 基区变窄(即有效基区厚度减小)。
- 基区变窄 → 载流子复合几率降低 → 发射极注入的电子更容易被集电极收集 → 电流 I C I_C IC增大。
这意味着:即使基极电压 VBEV 不变,增加 VCE 也会导致 IC 上升,打破理想三极管中 IC仅由 VBE 控制的假设。
2. 电特性表现
- 输出特性曲线的斜率:
厄尔利效应最直观的表现是在BJT的输出特性曲线( I C I_C IC vs V C E V_{CE} VCE,以 I B I_B IB 或 V B E V_{BE} VBE 为参数)上。在理想情况下(无厄尔利效应),当BJT工作在正向放大区时,对于给定的基极电流 I B I_B IB,集电极电流 I C I_C IC 应该不随 V C E V_{CE} VCE 的变化而变化,即输出特性曲线应该是水平的。然而,由于厄尔利效应,当 V C E V_{CE} VCE 增加时(近似于 V C B V_{CB} VCB 增加),有效基区宽度减小, I C I_C IC 随之增加。这使得输出特性曲线在放大区呈现出一定的正斜率。
- 厄尔利电压 ( V A F V_{AF} VAF 或 V A V_A VA):
如果将输出特性曲线在放大区的部分反向延长,这些延长线大致会交于 V C E V_{CE} VCE 轴的负半轴上的一点。这个电压的绝对值就被定义为厄尔利电压,用符号 V A F V_{AF} VAF (正向工作模式下的厄尔利电压) 或简单记为 V A V_A VA 表示。厄尔利电压是一个正值,典型值范围从几十伏特到几百伏特。 V A F V_{AF} VAF 越大,表明厄尔利效应越不显著,输出特性曲线越平坦,晶体管的输出电阻越高。反之, V A F V_{AF} VAF 越小,厄尔利效应越显著,曲线斜率越大
3. 数学模型与影响
-
集电极电流的修正:考虑厄尔利效应后,集电极电流 (I_C) 的表达式通常被修正为:
I C ≈ I S exp ( V B E V T ) ( 1 + V C E V A F ) I_C \approx I_S \exp\left(\frac{V_{BE}}{V_T}\right) \left(1 + \frac{V_{CE}}{V_{AF}}\right) IC≈ISexp(VTVBE)(1+VAFVCE)
其中:- I S I_S IS 是反向饱和电流。
-
V B E V_{BE} VBE 是基极-发射极电压。
-
V T V_T VT 是热电压 ( k T / q kT/q kT/q)。
-
V C E V_{CE} VCE 是集电极-发射极电压。
-
V A F V_{AF} VAF 是正向厄尔利电压。
-
对电流增益 (beta) 的影响:
由于直流电流增益 $ \beta_{DC} = \frac{I_C}{I_B} $,并且 I C I_C IC 现在包含了因子 $ \left(1 + \frac{V_{CE}}{V_{AF}}\right) $,这意味着即使理想的低 V C E V_{CE} VCE 下的电流增益 Bf(即模型参数 Bf)是一个常数,实际测量到的 $ \beta_{DC} $ 也会随 V C E V_{CE} VCE 的增加而增加:
r o = ∂ V C E ∂ I C ∣ I B = const r_o = \left. \frac{\partial V_{CE}}{\partial I_C} \right|_{I_B=\text{const}} ro=∂IC∂VCE IB=const
它使得 I C I_C IC 随 V C E V_{CE} VCE 增加而增加,从而导致测量到的Beta随 V C E V_{CE} VCE 增加而增加(在放大区)
- 输出电阻 (
r
o
r_o
ro):厄尔利效应直接决定了BJT的输出电阻
r
o
r_o
ro。输出电阻定义为在基极电流
I
B
I_B
IB 恒定时,
V
C
E
V_{CE}
VCE 的变化与
I
C
I_C
IC 的变化之比的倒数:
r o = ∂ V C E ∂ I C ∣ ∗ I B = const r_o = \left. \frac{\partial V_{CE}}{\partial I_C} \right|*{I_B=\text{const}} ro=∂IC∂VCE ∗IB=const
可以近似地表示为:
r o ≈ V A F + V C E I C ≈ V A F I C , Q r_o \approx \frac{V_{AF} + V_{CE}}{I_C} \approx \frac{V_{AF}}{I_{C,Q}} ro≈ICVAF+VCE≈IC,QVAF
其中 I C , Q I_{C,Q} IC,Q 是静态工作点下的集电极电流。一个较大的 V A F V_{AF} VAF 意味着较大的输出电阻,这在很多模拟电路设计中是期望的特性(例如,作为理想电流源的近似)。
4. 在电路设计中的意义
- 增益限制:在共射放大电路中,晶体管的输出电阻 r o r_o ro 会与集电极负载电阻并联,从而限制了放大器的最大电压增益。
-
电流源性能:在设计电流镜或恒流源时,输出电阻 r o r_o ro 是衡量电流源好坏的重要指标。厄尔利效应越弱( V A F V_{AF} VAF 越大, r o r_o ro 越大),电流源的性能越接近理想。
-
模型精度:在精确的电路仿真中,必须考虑厄尔利效应才能准确预测晶体管和电路的行为,尤其是在对输出阻抗、增益和频率响应有较高要求的模拟电路中。
多模拟电路设计中是期望的特性(例如,作为理想电流源的近似)。
4. 在电路设计中的意义
- 增益限制:在共射放大电路中,晶体管的输出电阻 r o r_o ro 会与集电极负载电阻并联,从而限制了放大器的最大电压增益。
-
电流源性能:在设计电流镜或恒流源时,输出电阻 r o r_o ro 是衡量电流源好坏的重要指标。厄尔利效应越弱( V A F V_{AF} VAF 越大, r o r_o ro 越大),电流源的性能越接近理想。
-
模型精度:在精确的电路仿真中,必须考虑厄尔利效应才能准确预测晶体管和电路的行为,尤其是在对输出阻抗、增益和频率响应有较高要求的模拟电路中。