参考https://www.bilibili.com/video/BV16J411h7Rd
目录
cell 数组创建、cell 创建的流程——longAccumulate方法
累加器性能比较
private static <T> void demo(Supplier<T> adderSupplier, Consumer<T> action) {
T adder = adderSupplier.get();
long start = System.nanoTime();
List<Thread> ts = new ArrayList<>();
// 4 个线程,每人累加 50 万
for (int i = 0; i < 40; i++) {
ts.add(new Thread(() -> {
for (int j = 0; j < 500000; j++) {
action.accept(adder);
}
}));
}
ts.forEach(t -> t.start());
ts.forEach(t -> {
try {
t.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
});
long end = System.nanoTime();
System.out.println(adder + " cost:" + (end - start)/1000_000);
}
//比较 AtomicLong 与 LongAdder
for (int i = 0; i < 5; i++) {
demo(() -> new LongAdder(), adder -> adder.increment());
}
for (int i = 0; i < 5; i++) {
demo(() -> new AtomicLong(), adder -> adder.getAndIncrement());
}
LongAdder快于AtomicLong,性能提升的原因:在有竞争时,设置多个累加单元Cell,Therad-0 累加 Cells[0],而 Thread-1 累加 Cells[1]... 最后将结果汇总。这样它们在累加时操作的不同的 Cell 变量,因此减少了 CAS 重试失败,从而提高性能。
LongAdder源码
成员变量
//继承Striped64(一个包本地类,为支持 64 位值动态条带化的类提供通用表示和机制。
//该类扩展了 Number 以便具体的子类必须公开这样做),且实现序列化
public class LongAdder extends Striped64 implements Serializable{}
abstract class Striped64 extends Number{
/** Number of CPUS, to place bound on table size
CPU 数量,限制表大小
*/
static final int NCPU = Runtime.getRuntime().availableProcessors();
/**
* Table of cells. When non-null, size is a power of 2.
单元格表。非空时,大小是 2 的幂,懒惰初始化
*/
transient volatile Cell[] cells;
/**
* Base value, used mainly when there is no contention, but also as
* a fallback during table initialization races. Updated via CAS.
基值,主要在没有争用时使用,但也可作为表初始化竞赛期间的后备。通过 CAS 更新
*/
transient volatile long base;
/**
* Spinlock (locked via CAS) used when resizing and/or creating Cells.
调整大小和/或创建单元格时使用自旋锁(通过 CAS 锁定)1表示上锁,0表示未上锁
*/
transient volatile int cellsBusy;
}
原理之伪共享
其中 Cell 即为累加单元
// 防止缓存行伪共享
@sun.misc.Contended
static final class Cell {
volatile long value;
Cell(long x) { value = x; }
// 最重要的方法, 用来 cas 方式进行累加, prev 表示旧值, next 表示新值
final boolean cas(long prev, long next) {
return UNSAFE.compareAndSwapLong(this, valueOffset, prev, next);
}
// 省略不重要代码
}
缓存与内存的速度比较
因为 CPU 与 内存的速度差异很大,需要靠预读数据至缓存来提升效率。 而缓存以缓存行为单位,每个缓存行对应着一块内存,一般是 64 byte(8 个 long) 缓存的加入会造成数据副本的产生,即同一份数据会缓存在不同核心的缓存行中 ,CPU 要保证数据的一致性,如果某个 CPU 核心更改了数据,其它 CPU 核心对应的整个缓存行必须失效。
因为 Cell 是数组形式,在内存中是连续存储的,一个 Cell 为 24 字节(16 字节的对象头和 8 字节的 value),因 此缓存行可以存下 2 个的 Cell 对象。 问题来了: Core-0 要修改 Cell[0] Core-1 要修改 Cell[1] 无论谁修改成功,都会导致对方 Core 的缓存行失效,比如 Core-0 中 Cell[0]=6000, Cell[1]=8000 要累加 Cell[0]=6001, Cell[1]=8000 ,这时会让 Core-1 的缓存行失效。
@sun.misc.Contended 用来解决这个问题,它的原理是在使用此注解的对象或字段的前后各增加 128 字节大小的 padding,从而让 CPU 将对象预读至缓存时占用不同的缓存行,这样,不会造成对方缓存行的失效 。
累加add方法
/**
* Adds the given value.
*
* @param x the value to add
*/
public void add(long x) {
// as 为累加单元数组
// b 为基础值
// x 为累加值
Cell[] as; long b, v; int m; Cell a;
// 进入 if 的两个条件
// 1. as 有值, 表示已经发生过竞争, 进入 if
// 2. cas 给 base 累加时失败了, 表示 base 发生了竞争, 进入 if
if ((as = cells) != null || !casBase(b = base, b + x)) {
// uncontended 表示 cell 没有竞争
boolean uncontended = true;
if (
// as 还没有创建
as == null || (m = as.length - 1) < 0 ||
// 当前线程对应的 cell 还没有
(a = as[getProbe() & m]) == null ||
// cas 给当前线程的 cell 累加失败,
// uncontended=false ( a 为当前线程的 cell )
!(uncontended = a.cas(v = a.value, v + x)))
{
// 进入 cell 数组创建、cell 创建的流程
longAccumulate(x, null, uncontended);
}
}
}
cell 数组创建、cell 创建的流程——longAccumulate方法
/**
处理涉及初始化、调整大小、创建新单元和或争用的更新案例。参见上面的解释。
这种方法存在乐观重试代码的常见非模块化问题,依赖于重新检查的读取集
*
* @param x the value
* @param fn the update function, or null for add (this convention
* avoids the need for an extra field or function in LongAdder).
更新函数,或 null 用于添加(此约定避免 LongAdder 中需要额外的字段或函数
* @param wasUncontended false if CAS failed before call
或者如果 CAS 在调用之前失败
*/
final void longAccumulate(long x, LongBinaryOperator fn,
boolean wasUncontended) {
int h;
// 当前线程还没有对应的 cell, 需要随机生成一个 h 值用来将当前线程绑定到 cell
if ((h = getProbe()) == 0) {
// 初始化 probe
ThreadLocalRandom.current(); // 强制初始化
// h 对应新的 probe 值, 用来对应 cell
h = getProbe();
wasUncontended = true;
}
// collide 为 true 表示需要扩容
boolean collide = false; // 如果最后一个插槽非空则为真
for (;;) {
Cell[] as; Cell a; int n; long v;
// cells存在
if ((as = cells) != null && (n = as.length) > 0) {
// cell不存在
if ((a = as[(n - 1) & h]) == null) {
// 为 cellsBusy 加锁, 创建 cell, cell 的初始累加值为 x
// 成功则 break, 否则继续 continue 循环
if (cellsBusy == 0) { // 尝试添加新的cell
Cell r = new Cell(x); // 乐观创建
if (cellsBusy == 0 && casCellsBusy()) { // casCellsBusy(): CAS 将 cellsBusy 字段从 0 变为 1 以获取锁
boolean created = false;
try { // 重新检查锁
Cell[] rs; int m, j;
if ((rs = cells) != null &&
(m = rs.length) > 0 &&
rs[j = (m - 1) & h] == null) {
rs[j] = r;
created = true;
}
} finally {
cellsBusy = 0;
}
if (created)
break;
continue; // 插槽现在非空
}
}
collide = false;
}
// 有竞争, 改变线程对应的 cell 来重试 cas
else if (!wasUncontended) // CAS already known to fail
wasUncontended = true; // Continue after rehash
// cas 尝试累加, fn 配合 LongAccumulator 不为 null, 配合 LongAdder 为 null
else if (a.cas(v = a.value, ((fn == null) ? v + x :
fn.applyAsLong(v, x))))
break;
// 如果 cells 长度已经超过了最大长度, 或者已经扩容, 改变线程对应的 cell 来重试 cas
else if (n >= NCPU || cells != as)
collide = false; // At max size or stale
// 确保 collide 为 false 进入此分支, 就不会进入下面的 else if 进行扩容了
else if (!collide)
collide = true;
// 加锁
else if (cellsBusy == 0 && casCellsBusy()) {
// 加锁成功, 扩容
try {
if (cells == as) { // Expand table unless stale
Cell[] rs = new Cell[n << 1];
for (int i = 0; i < n; ++i)
rs[i] = as[i];
cells = rs;
}
} finally {
cellsBusy = 0;
}
collide = false;
continue; // Retry with expanded table
}
// 改变线程对应的 cell
h = advanceProbe(h);
}
// 还没有 cells, 尝试给 cellsBusy 加锁
else if (cellsBusy == 0 && cells == as && casCellsBusy()) {
// 加锁成功, 初始化 cells, 最开始长度为 2, 并填充一个 cell
// 成功则 break;
boolean init = false;
try { // Initialize table
if (cells == as) {
Cell[] rs = new Cell[2];
rs[h & 1] = new Cell(x);
cells = rs;
init = true;
}
} finally {
cellsBusy = 0;
}
if (init)
break;
}
// 上两种情况失败, 尝试给 base 累加
else if (casBase(v = base, ((fn == null) ? v + x :
fn.applyAsLong(v, x))))
break; // Fall back on using base
}
}
每个线程刚进入 longAccumulate 时,会尝试对应一个 cell 对象(找到一个坑位)
获取最终结果通过 sum 方法
返回当前总和。返回的值不是原子快照;
在没有并发更新的情况下调用会返回准确的结果,
但在计算总和时发生的并发更新可能不会被合并
public long sum() {
Cell[] as = cells; Cell a;
long sum = base;
if (as != null) {
for (int i = 0; i < as.length; ++i) {
if ((a = as[i]) != null)
sum += a.value;
}
}
return sum;
}