优化算法
文章平均质量分 89
启发式算法+一些最优化算法
逆行的炸酱面
一斤代码十撮头发
展开
-
粒子群算法
通过上一节我们得知遗传算法是一种智能的随机搜索算法,胡乱随机的过程中隐隐透着一丝章法,这是借鉴了大自然的生存法则。而今天登场的粒子群算法也源于日常生活。当地上掉落一坨蜂蜜时,我们希望找到它的方位,怎么办呢?于是乎我们放出100只蚂蚁,让他们在这片广袤无垠的土地上随机搜索。但并不是完全随机,当有一只蚂蚁嗅到了极高浓度的蜂蜜气息时,它会对其他蚂蚁大喊(触角:你礼貌吗):“Come ...原创 2022-08-22 14:19:24 · 250 阅读 · 0 评论 -
遗传算法(数模案例详解)
“物竞天择,适者生存“,进化界的名言没想到也能用在算法里,不得不承认每个算法工程师也是天马行空的魔法师。由于经常参加数学煎馍美食烹饪大赛,因此时不时需要和启发式算法打交道,这些智能算法的思想充满着活力和开拓性,coding的时候甚至感觉自己像上帝一样为自己的世界制定着规则,不禁连连感叹。今天开启智能算法篇章,首先上场的是遗传大法。Ω启发式算法的目的往往是寻求一个优化模...原创 2022-08-20 17:27:29 · 270 阅读 · 0 评论 -
模拟退火+Gurobi 解决 旅行家问题TSP
模拟退火算法,顾名思义,模拟晶体退火过程。晶体在加热后固体化为液态,内部原子运动加剧,会离开原有位置向四周扩散。此时慢慢进行退火冷却使其重新固化,粒子往往会停留在比原先能量低得多的位置上,本质上也是通过随机性跳出局部最优。本文尝试用模拟退火算法对TSP问题(travelling salesman problem)进行求解,并与Gurobi求解器进行对比。原创 2022-08-28 20:11:50 · 965 阅读 · 0 评论 -
0-1多背包带约束问题(MKAR)
本文其实与智能算法无关,这是最优化课程的一个小作业,之所以放在智能算法一栏,是因为这个问题的大部分解法都是智能算法。下面出场的是背包问题的一个变种——带约束的多背包问题,这个问题的精确算法复杂度极高,所以一般退而求其次寻找拥有固定近似比的近似算法,本文求解采取的则是一种基于DP动态规划的近似算法,巧妙的并不是算法本身,算法也不能保证求出最优解,精华在于近似比的证明部分,这一部分证...原创 2022-10-22 13:52:27 · 1226 阅读 · 0 评论