CUDA安装教程【小白入门】(包含版本选择,安装失败,环境变量配置)

本文详细指导深度学习开发者如何在Windows系统上安装PyTorch和CUDA,包括设置Anaconda虚拟环境、选择合适的CUDA版本、处理安装问题,以及配置环境变量,确保GPU加速的顺利使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文提供了一个详细的指南,帮助深度学习开发者在Windows系统上快速安装PyTorch和CUDA。我们将逐步介绍如何设置Anaconda虚拟环境、安装指定版本的PyTorch以及配置CUDA,以确保你的深度学习项目可以充分利用GPU加速。无论你是刚入门的AI爱好者还是有经验的机器学习工程师,这篇文章都将为你提供所需的一切信息,让你的开发环境配置变得轻松而无忧。

一、查找适合自己显卡驱动版本的CUDA 下载安装

如果需要安装Anaconda的可以参考一下这个帖子安装Anaconda和配置环境变量

Anaconda安装教程(超详细版)-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/m0_61607990/article/details/129531686

win+R输入cmd打开命令行

根据图片输入查看显卡驱动版本

再到以下网址查看驱动所支持的最大CUDA版本

CUDA 12.3 Update 2 Release Notes (nvidia.com)icon-default.png?t=N7T8https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html博主的是11.8版本

再进入以下网址查看支持CUDA11.8的PyTorch的版本,这里是最新版本

Previous PyTorch Versions | PyTorchicon-default.png?t=N7T8https://pytorch.org/get-started/previous-versions/

点击以下链接进入CUDA官网

CUDA Toolkit 12.3 Update 2 Downloads | NVIDIA Developericon-default.png?t=N7T8https://developer.nvidia.com/cuda-downloads

安装CUDA

根据之前查看的版本选择


下载好后打开,然后选择安装目录,然后会自动打开安装程序

下一步

如果与博主一样下载进度一直为0的,可以下载另一个选项local版本

二、安装失败问题解决
如果安装失败的【博主推荐自定义安装,然后在安装错误时,就取消勾选Nsight VSE、Nsight computer和Visual Studio Intergration,然后就能安装了】
三、环境变量配置

将环境变量添加到PATH中

接着打开cmd运行nvcc -V,有版本信息说明就是安装成功

### 安装准备 为了确保顺利安装NVIDIA驱动、CUDA以及cuDNN,在Ubuntu 20.04上操作前需确认系统已经更新至最新状态并重启计算机。 ```bash sudo apt update && sudo apt upgrade -y ``` ### 安装 NVIDIA 驱动 通过官方仓库安装最新的稳定版NVIDIA驱动程序是一个较为推荐的方式。在此之前,移除任何旧版本的显卡驱动是非常重要的[^1]: ```bash sudo apt-get purge nvidia* ``` 接着添加专用于GPU计算的PPA源来获取更稳定的驱动支持,并执行安装命令: ```bash sudo add-apt-repository ppa:graphics-drivers/ppa sudo apt-get update sudo apt install nvidia-driver-<version> ``` 其中`<version>`代表具体的驱动版本号,可以根据实际情况调整。完成上述过程之后,建议重新启动机器使更改生效。 验证安装是否成功可以使用如下指令查询当前使用的图形设备及其驱动信息: ```bash dpkg -l | grep nvidia nvidia-smi ``` 如果显示了有关NVIDIA GPU的信息,则说明驱动安装无误[^2]。 ### CUDA Toolkit 的安装 对于CUDA工具包而言,有两种主要途径可以选择——利用APT包管理器或是下载运行文件形式的手动部署方式。这里采用更为简便的第一种方法来进行介绍。 先注册环境变量以便后续能够正常使用CUDA编译器nvcc及其他组件: 编辑~/.bashrc 文件加入下面两行(假设安装路径默认): ```bash export PATH=/usr/local/cuda-<version>/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-<version>/lib64\ ${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} ``` 再次替换 `<version>` 成实际要安装的具体版本号。保存修改后的配置文件后使之立即生效: ```bash source ~/.bashrc ``` 现在可以通过APT库直接安装所需版本CUDA toolkit : ```bash wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-keyring_1.0-1_all.deb sudo dpkg -i cuda-keyring_1.0-1_all.deb sudo apt-get update sudo apt-get -y install cuda ``` 最后同样需要重启电脑让新的设置起作用。 ### cuDNN 库的集成 cuDNN作为深度学习框架下的优化加速库,通常是以压缩包的形式提供给开发者自行解压到指定目录下。前往[NVIDIA官方网站](https://developer.nvidia.com/rdp/cudnn-archive),登录账号后找到对应于所用CUDA版本的cuDNN版本进行下载。 下载完成后给予可执行权限再按照提示逐步完成整个流程即可[^3]: ```bash sudo chmod a+x cudnn-linux-x86_64-v*-*.tgz tar -xzvf cudnn-linux-x86_64-v*-*.tgz sudo cp cuda/include/* /usr/local/cuda/include/ sudo cp cuda/lib64/* /usr/local/cuda/lib64/ ``` 注意这里的星号(*)部分应被具体版本字符串替代。至此全部软件栈均已就绪!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值