信息论与编码2 期末复习-循环码

循环码

定义

设一个(n, k)线性分组码C,如果它的任一码字的每一次循环移位都还是C的一个码字,则称C是循环码。
在这里插入图片描述
例如:
在这里插入图片描述

特点

  • 循环码是线性码
  • 具有循环特性
    在这里插入图片描述
    在这里插入图片描述在这里插入图片描述
    总结:如果将一个循环码的某一非零码字用码多项式表示出来,那么其他的非零码字多项式就可以用这个码字多项式(或码字多项式的和)乘上x的一个幂,再求(xn-1) 的余得到

编码

循环码的生成多项式

若g(x)是一个(n-k)次多项式,且是(xn-1)的因式,则由g(x)可以生成一个(n,k)循环码,g(x)称为该循环码的生成多项式。

(n,k)循环码的构造

(1)对(x n - 1)做因式分解,找出(n – k)次因式;
(2)以该(n – k)次因式为生成多项式g(x)与不高于k – 1次信息多项式u(x)相乘,即得到对应消息序列的码多项式。

例:
在这里插入图片描述
在这里插入图片描述

生成矩阵

当循环码的生成多项式g(x)给定后,可以取g(x)本身加上移位k – 1次所得到的k – 1码字作为k个基底,即: g(x),xg(x),…,xk1g(x)构成基底
在这里插入图片描述
在这里插入图片描述
例题:在这里插入图片描述

校验矩阵

xn-1 = g(x)·h(x)

由g (x)生成的码为C,在由h (x)生成的码就是C的对偶码C.

例题

在这里插入图片描述

构造

校验

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sec0nd_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值