循环码
定义
设一个(n, k)线性分组码C,如果它的任一码字的每一次循环移位都还是C的一个码字,则称C是循环码。
例如:
特点
- 循环码是线性码
- 具有循环特性
总结:如果将一个循环码的某一非零码字用码多项式表示出来,那么其他的非零码字多项式就可以用这个码字多项式(或码字多项式的和)乘上x的一个幂,再求(xn-1) 的余得到
编码
循环码的生成多项式
若g(x)是一个(n-k)次多项式,且是(xn-1)的因式,则由g(x)可以生成一个(n,k)循环码,g(x)称为该循环码的生成多项式。
(n,k)循环码的构造
(1)对(x n - 1)做因式分解,找出(n – k)次因式;
(2)以该(n – k)次因式为生成多项式g(x)与不高于k – 1次信息多项式u(x)相乘,即得到对应消息序列的码多项式。
例:
生成矩阵
当循环码的生成多项式g(x)给定后,可以取g(x)本身加上移位k – 1次所得到的k – 1码字作为k个基底,即: g(x),xg(x),…,xk1g(x)构成基底
例题:
校验矩阵
xn-1 = g(x)·h(x)
由g (x)生成的码为C,在由h (x)生成的码就是C的对偶码C⊥.
例题