【笔记整理】通信原理第九章复习——循环码

9.5 循环码

9.5.1 循环码的概念

循环性是指任意码组循环移位后仍然是该编码中的一个码组
多项式表示法
一般情况
( a n − 1 a n − 2 . . . a 0 ) (a_{n-1}a_{n-2}...a_0) (an1an2...a0)是循环码的一个码组,则循环移位后的码组:
( a n − 2 a n − 3 . . . a 0 a n − 1 ) (a_{n-2}a_{n-3}...a_0a_{n-1}) (an2an3...a0an1)
( a n − 3 a n − 4 . . . a n − 1 a n − 2 ) (a_{n-3}a_{n-4}...a_{n-1}a_{n-2}) (an3an4...an1an2)
… …
( a 0 a n − 1 . . . a 2 a 1 ) (a_{0}a_{n-1}...a_2a_1) (a0an1...a2a1)仍然是该编码中的码组

  • 多项式表示法
    一个长度为 n n n的码组 ( a n − 1 a n − 2 . . . a 0 ) (a_{n-1}a_{n-2}...a_0) (an1an2...a0)可以表示成
    T ( x ) = a n − 1 x n − 1 + a n − 2 x n − 2 + . . . + a 1 x + a 0 T(x)=a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+...+a_1x+a_0 T(x)=an1xn1+an2xn2+...+a1x+a0
    x x x的值没有任何意义,仅用它的幂代表 码元的位置
    【例】码组1100101可以表示为
    T ( x ) = 1 ⋅ x 6 + 1 ⋅ x 5 + 0 ⋅ x 4 + 0 ⋅ x 3 + 1 ⋅ x 2 + 0 ⋅ x + 1 = x 6 + x 5 + x 2 + 1 T(x)=1 \cdot x^6+1 \cdot x^5+0 \cdot x^4 +0 \cdot x^3 +1 \cdot x^2 +0 \cdot x +1= x^6 + x^5 + x^2 +1 T(x)=1x6+1x5+0x4+0x3+1x2+0x+1=x6+x5+x2+1

9.5.2 循环码的运算

9.5.2.1 整数的按模运算

在整数运算中,有模 n n n运算。
若一个整数 m m m可以表示为
m n = Q + p n \frac{m}{n}=Q+\frac{p}{n} nm=Q+np
式中, Q Q Q为整数,则在模 n n n运算下,有
m ≡ p ( 模 n ) m \equiv p (\text{模}n) mp(n)
在模 n n n运算下,一个整数 m m m等于它被 n n n除得所得的余数

9.5.2.2 码多项式的按模运算

若任意一个多项式 F ( x ) F(x) F(x)被一个 n n n次多项式 N ( x ) N(x) N(x)除,得到商式 Q ( x ) Q(x) Q(x)和一个次数小于 n n n的余式 R ( x ) R(x) R(x),即
F ( x ) = N ( x ) Q ( x ) + R ( x ) F(x)=N(x)Q(x)+R(x) F(x)=N(x)Q(x)+R(x)
则在按模 N ( x ) N(x) N(x)运算下,有
F ( x ) ≡ R ( x ) ( 模 N ( x ) ) F(x) \equiv R(x) (\text{模}N(x)) F(x)R(x)(N(x))
【例】 x 3 x^3 x3 ( x 3 + 1 ) (x^3+1) (x3+1)除,得到余项即
x 3 ≡ 1 ( 模 ( x 3 + 1 ) ) x^3 \equiv1(\text{模}(x^3+1)) x31((x

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值