load_diabetes导入的糖尿病数据集的使用和介绍

用户指南:糖尿病数据集

sklearn.datasets 提供的 糖尿病数据集 是一个内置的回归分析数据集,适合用于回归任务的练习或模型性能测试。以下是如何高效使用该数据集的详细指南。


数据集概述

  • 样本数:442 位患者。
  • 特征数:10 个基础生理变量(如 BMI、血压等)。
  • 目标值:一年后的疾病进展量化指标。

如何加载数据集

1. 加载数据
from sklearn.datasets import load_diabetes

# 加载数据集
diabetes = load_diabetes()
2. 访问数据组件
  • 特征数据 (diabetes.data):默认为形状为 (442, 10) 的 NumPy 数组。
  • 目标值 (diabetes.target):形状为 (442,) 的 NumPy 数组。
  • 特征名称 (diabetes.feature_names):特征名称列表。
  • 数据集描述 (diabetes.DESCR):数据集的详细描述。

load_diabetes 函数的主要参数

函数签名
load_diabetes(*, return_X_y=False, as_frame=False, scaled=True)
参数说明
return_X_y如果设为 True,返回 (X, y) 元组,而不是字典形式的数据。
as_frame如果设为 Truedatatarget 将以 Pandas 的 DataFrame 和 Series 形式返回。
scaled如果设为 True,特征数据已标准化(均值为 0,方差为 1)。如果设为 False,返回未标准化的原始数据。

数据集探索

示例 1:查看数据结构
print("特征数据形状:", diabetes.data.shape)
print("目标值形状:", diabetes.target.shape)
print("特征名称:", diabetes.feature_names)
示例 2:以 Pandas DataFrame 形式加载
diabetes_df = load_diabetes(as_frame=True)
print(diabetes_df.frame.head())  # 查看前几行数据

数据可视化

1. 绘制特征与目标值的关系图
import matplotlib.pyplot as plt
import pandas as pd

# 加载为 DataFrame 格式
diabetes_df = load_diabetes(as_frame=True)
data = diabetes_df.data
target = diabetes_df.target

# 示例:绘制 BMI 与目标值的散点图
plt.scatter(data['bmi'], target, alpha=0.5)
plt.xlabel('BMI')
plt.ylabel('疾病进展量化指标')
plt.title('BMI 与疾病进展的关系')
plt.show()
2. 绘制特征相关性热力图
import seaborn as sns

# 合并特征数据和目标值
df = diabetes_df.frame
correlation = df.corr()

# 绘制热力图
sns.heatmap(correlation, annot=True, cmap="coolwarm")
plt.title("特征相关性热力图")
plt.show()

训练集与测试集划分

在应用机器学习模型之前,建议划分数据集:

from sklearn.model_selection import train_test_split

X, y = load_diabetes(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

模型训练示例

使用线性回归
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

# 训练模型
model = LinearRegression()
model.fit(X_train, y_train)

# 预测并评估
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)

print("均方误差(MSE):", mse)

特征重要性分析

使用模型的特征系数
import numpy as np

# 输出特征的重要性
coef = model.coef_
feature_names = load_diabetes().feature_names
for name, importance in zip(feature_names, coef):
    print(f"{name}: {importance:.4f}")

高级用法

手动标准化数据

如果设置 scaled=False,可以手动对数据进行标准化:

from sklearn.preprocessing import StandardScaler

diabetes_unscaled = load_diabetes(scaled=False)
scaler = StandardScaler()
X_scaled = scaler.fit_transform(diabetes_unscaled.data)

实用建议

  1. 使用 as_frame=True,方便利用 Pandas 进行数据探索。
  2. 如果未标准化数据(scaled=False),请对数据进行预处理(如归一化或标准化)。
  3. 探索特征之间的相互作用,以提升模型性能。
  4. 使用交叉验证(sklearn.model_selection.cross_val_score)进行更稳健的模型评估。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值