本文为撰写毕业论文中部分环节的阶段性总结,原文、模型、代码会在合适时候公开,主要功能为处理图像数据,通过一系列的卷积层、池化层、全连接层来提取图像特征,并最终输出图像的评分预测。此外,如有需要作者的CNN对于LIVE和TID2008的模型,请联系。
介绍一下全参考图像质量评价(FR-IQA)、半参考图像质量评价、无参考图像质量评价(NR-IQA)及其难点
全参考图像质量评价算法:
- 峰值信噪比(PSNR):PSNR是一种广泛应用的图像质量评估指标。它通过对比原始图像与重构图像之间的最大可能像素值和均方误差来衡量图像质量。PSNR主要用于量化图像重构的质量和失真的程度。
- 结构相似性指数(SSIM):SSIM是一种更为复杂的图像质量评估方法,它综合考虑了图像的亮度、对比度和结构信息。通过对比两幅图像在亮度、对比度和结构上的相似性,SSIM能够评估图像的质量。SSIM指数的值越高,说明两幅图像的相似度越高,图像质量也越好。
- 均值结构相似性指数(MSSIM):MSSIM是对SSIM的进一步改进,它在多个尺度上计算SSIM,以更全面地评估图像质量。然后,将这些SSIM值取平均,得到最终的评价结果。MSSIM能更好地处理图像中的细节和结构信息,从而更准确地评估图像质量。
4.视觉信息保真度(VIF):VIF是一种基于人眼视觉系统的图像质量评价指标。它考虑了人眼对图像亮度、对比度和结构信息的感知敏感度。通过计算原始图像和失真图像之间的视觉信息保真度,它能够更准确地评估图像质量。
全参考图像评价算法的难点主要包括:
- 主观性:对于人眼视觉系统的图像质量设计存在一定的主观性,不同的人可能对同一张图像的评价结果会有很大的差异。
- 多样性:图像的损伤类型有很多种,如模糊、噪声、压缩失真等,每种损伤类型可能需要不同的评价方法,要选择一个统一并使得差异性最大的特征较为困难。
3.复杂性:图像的质量受到很多因素的影响,如亮度、对比度等,要综合这些因素进行评价具有复杂的组合度。 - 对原始图像的依赖:该算法需要原始的、未受损的图像作为参考。然而,在许多实际应用中,我们可能无法获得原始图像。
半参考质量评价图像:
- DESIQUE(边缘强度和方向一致性的图像质量评估):DESIQUE提取原始图像的边缘信息,包括强度和方向,并比较原始图像和失真图像的边缘信息的一致性,从而评估图像质量。
2.RRED(半参考图像质量评估的减少参考):RRED是一种基于自然场景统计特性的半参考图像质量评价算法,提取原始图像的NSS特性,比较原始图像和失真图像的NSS特性,使用特殊的NSS模型捕获重要视觉特性。
半参考质量评价图像的难点主要在于:
- 信息选择:我们只能使用原始图像的部分信息。如何选择这些信息,以便能够最大限度地反映图像质量。
- 信息提取:我们需要从原始图像中提取有用的信息,需要用到复杂的图像处理和分析技术。
- 信息比较:我们需要比较原始图像和失真图像的信息,需要设计一个通用的算法。
无参考质量评价图像
- BRISQUE(Blind/Referenceless Image Spatial Quality Evaluator):这是一种无参考图像质量评价算法,它通过计算图像的自然场景统计(以下称为NSS)特性来评估图像质量。BRISQUE不需要进行图像的训练,计算速度快,适用于实时应用。
- NIQE(Naturalness Image Quality Evaluator):这是另一种基于自然场景统计特性的无参考图像质量评价算法。NIQE算法首先从原始图像中提取NSS特性,包括图像的均值、方差、边缘信息等。然后,它将这些特性与已知的NSS数据库进行比较,计算出原始图像与参考图像之间的相似度。与BRISQUE不同,NIQE需要对图像进行训练,但可以得到更准确的评价结果。
- DNN-based methods:也有一些基于深度神经网络的无参考图像质量评价算法,如RankIQA、DeepIQA等。它们可以自动从图像中提取有用的特征,而无需人工设计特征。此外,它们还可以通过训练来不断改进性能,可以得到更准确的评价结果。
无参考图像质量评价的难点主要包括:
- 无参考:由于无法获得原始的、未受损的图像,无参考图像质量评价需要从受损图像本身提取有用的特征。
- 多样性:图像的损伤类型有很多种,如模糊、噪声、压缩失真等,每种损伤类型可能需要不同的评价方法。
- 主观性:图像质量的评价往往具有很强的主观性,不同的人可能对同一张图像的评价结果会有很大的差异。
为什么要做图像质量评价算法:
- 图像压缩:在图像压缩中,可以评估压缩算法的性能,即压缩后的图像与原始图像的质量差异。
- 图像恢复:在图像恢复或增强中,可以评估恢复算法的效果,即恢复后的图像与原始图像的质量差异,图像质量评价算法可以帮助我们评估和比较不同的恢复算法。
- 图像传输:在图像传输中,由于网络带宽的限制,图像通常需要进行压缩。在接收端,我们需要评估接收到的图像的质量,以便进行必要的调整或错误修复。
- 图像识别:在图像识别或机器视觉中,图像的质量直接影响到识别的准确性。通过图像质量评价,我们可以选择质量较高的图像进行处理,从而提高识别的准确性。
雾是一种常见的大气现象,室外图像采集设备捕获的图像对比度和颜色饱和度会大幅度下降,甚至会造成图像色彩偏移,造成细节大量丢失的现象,从而无法获取真实的图像信息,使图像变得模糊不清。这对许多图像处理和计算机视觉应用造成了严重的挑战。通过对图像去雾算法的深入研究,我们能够从退化图像中去除天气因素的干扰,增强图像的清晰度和颜色饱和度,从而最大限度地恢复图像的有用特征。
现有的图像去雾方法
1.基于暗通道先验的图像去雾算法
该算法通过估计图像中的天气条件和场景深度信息,从天气条件中恢复出清晰、无雾的图像。该算法简单、高效,具有较好的去雾效果,被广泛应用于单图像去雾领域。然而,该算法在处理具有强光照明和薄雾覆盖的图像时可能会出现色彩失真和细节丢失的问题。
2.基于深度学习的图像去雾算法
该算法使用卷积神经网络(CNN)来估计场景深度信息,并从天气条件中恢复出清晰、无雾的图像。该算法具有较好的去雾效果,被广泛应用于实际场景中。
关于卷积神经网络的重要知识
- 卷积层:卷积层通过滤波器(或称为卷积核)在输入图像上滑动,计算滤波器和图像的局部区域之间的点积,以此提取图像的特征。每个滤波器都能够捕捉到图像的某些特定特征,如边缘、颜色或纹理等。
- 激活函数:ReLU(Rectified Linear Unit)是最常用的激活函数之一,它的作用是增加网络的非线性,使得网络能够学习复杂的特征表示。ReLU函数的公式是f(x) = max(0, x)。
- 池化层:池化层用于降低特征图的空间维度(高度和宽度),减少参数数量和计算量,同时保持特征的主要信息。最大池化是一种常见的池化方式,它选择特征区域内的最大值作为该区域的代表。
- 全连接层:在卷积层和池化层提取并压缩了图像特征之后,全连接层用于将这些特征映射到最终的输出,如分类标签或回归值。全连接层的每个神经元都与前一层的所有神经元相连接。
- 过拟合与正则化:过拟合是深度学习中常见的问题,指模型在训练数据上表现很好,但在未见过的数据上表现差。为了防止过拟合,可以使用正则化技术,如L2正则化(权重衰减)和Dropout。
- 优化器和学习率:优化器负责更新网络的权重,以最小化损失函数。常见的优化器包括SGD、Adam等。学习率是优化过程中的一个常见的优化器包括SGD、Adam等。学习率是优化过程中的一个关键超参数,它决定了在每次迭代中参数更新的幅度。学习率设置得太高可能导致训练不稳定,而设置得太低则会使训练过程缓慢,甚至陷入局部最小值。
- 批量归一化(Batch Normalization):这是一种用于提高网络稳定性和加速训练的技术,通过对每个小批量数据进行归一化处理,使得数据在经过激活函数之前的分布更加稳定。
数据增强(Data Augmentation):在训练过程中,通过对训练数据进行随机变换(如旋转、缩放、裁剪等),可以人为地扩大训练集的规模,帮助模型学习到更加鲁棒的特征表示,从而减少过拟合的风险。 - 迁移学习(Transfer Learning):在迁移学习中,可以利用在大型数据集(如ImageNet)上预训练的模型作为起点,对其进行微调以适应特定的任务。这种方法可以显著减少训练时间和数据需求,特别是在数据较少的情况下。
- 注意力机制(Attention Mechanism):近年来,注意力机制已经成为提高卷积神经网络性能的一个重要手段。通过让网络能够关注到图像的关键部分,可以提高模型对图像的理解能力。
这里给需要撰写CNN网络的提供一点步骤,可以参照
图像预处理:
读取图像:使用tf.io.read_file函数读取图像文件。2. 解码图像:tf.image.decode_image函数用于解码图像文件,设置channels=3表示输出三通道的RGB图像。3. 调整图像大小:tf.image.resize函数将图像大小调整为32x32像素,这是网络输入层所需的尺寸。4. 归一化:图像的像素值被归一化到0到1之间,通过将像素值除以255实现。
网络结构:这个要自己设计
一个Flatten层,将特征图展平为一维向量,以便输入到全连接层。
第一个全连接层有128个神经元,激活函数为ReLU,使用L2正则化。
第二个全连接层有64个神经元,配置与第一个全连接层相同。
训练配置:可以使用带动量的随机梯度下降(SGD),学习率为0.005,动量为0.9。使用均方误差(MSE)为损失函数,用于评估模型预测值与真实值之间的差异。
使用一个自定义的学习率调度函数lr_schedule,每30个epoch将学习率减半,以细致地调整学习过程,帮助模型更好地收敛。
由于种种原因,不能公开文章正文,以下为文章的初稿形式,供作参考。
基于n个置信度的图像质量评价
摘 要: 随着图像去雾技术的发展,其在无人机、自动驾驶等领域的应用日益增多,去雾算法也日渐丰富。然而,对于去雾图像视觉质量的评估研究相对不足,需发展新的评价指标以满足多样化需求。图像质量评价(IQA)方法中,全参考(FR-IQA)、半参考(RR-IQA)和无参考(NR-IQA)图像质量评价方法各有优势和局限。特别是在去雾等场景中,由于难以获得完整的参考图像,RR-IQA和NR-IQA方法显示出其重要性。本文提出了一种从半参考到无参考的去雾图像质量评价方法,通过利用去雾图像中的隐藏质量信息,从图像局部差异入手,评估无参考图像质量。在各种大量实验结果的基础上表明,该方法不仅能够有效评估去雾图像的视觉质量,而且具有普适性和可扩展性,可应用于各种图像质量评价任务。
关键词: 质量评价;无参考;深度学习;卷积神经网络;评估指标;
I.介绍
当前,图像去雾技术呈现出多样化的发展态势,主要聚焦于提高去雾效果的准确性和鲁棒性。此外,针对特定场景和传感器的去雾算法也日益丰富,如无人机、自动驾驶等应用场景。然而,在评估去雾图像视觉质量方面的研究相对不足。尽管包括传统的客观评价和主观评价,但仍需要发展一些结合人类视觉特性的新型评价指标。
在图像质量评价中,可以使用不同的方法来进行参考,这取决于初始图像的特点。全参考图像质量评价(FR-IQA)是一种最常见的方法,它需要完整无失真的参考图像作为基准,并通过比较原始图像与参考图像之间的差异来评估图像质量,可以提供相对较为准确的评价指标。然而,对于图像去雾等应用场景,可能无法获取到完整的参考图像,这时可以采用半参考图像质量评价(RR-IQA)方法。RR-IQA使用部分原始图像信息或特征作为参考,保留了一定程度的参考信息,能够在一定程度上反映图像质量。而对于缺乏原始图像的情况,无参考图像质量评价(NR-IQA)方法则拥有更高的实用性。NR-IQA基于图像自身的特征进行评价,虽然缺乏参考信息,但仍能提供一定程度的图像质量评估。
传统的RR-IQA方法通常通过亮度辨别、颜色外观等特征来评估图像质量。然而,这些方法存在一定的局限性。首先,它们往往针对特定失真类型设计,对其他类型失真的准确性略有偏颇。其次,这些方法未能充分考虑图像中的局部结构和内容特征,难以捕捉主观感知质量评价的复杂性。
相较而言,采用n个置信度转换为客观质量分数的方法具有显著优势。通过卷积神经网络得到的置信度可以自适应地捕捉图像中各类特征,并根据不同失真类型进行评估。这使得该方法在评估不同失真和复杂场景时具有更高的准确性和适应性,且避免了设计手工特征的困扰。此外,基于置信度的池化策略能够聚焦于最显著和重要的区域,更好地捕捉影响感知质量的关键信息,从而使评估结果更加全面和准确。
置信度转换为客观质量分数的方法具有普适性和可扩展性,不依赖于特定失真类型或应用场景。同时,它可以与各类深度学习模型相结合,灵活应用于各种图像质量评价任务中。
然而,在实际的应用中,可供参考的信息和标准不总是可获得的,这限制了RR-IQA方法在许多场景下的适用性。因此,将基于参考图像的图像质量评价(RR-IQA)扩展为基于无参考图像的图像质量评价(NR-IQA)是必要的。
基于上述目标,本文中提出了一种从依靠置信度从半参考到无参考的去雾图像质量评价方法。该方法通过从图像的局部差异入手,利用在去雾图像中的隐藏质量信息,对无参考图像质量进行评估。
II.相关工作
在图像去雾技术的研究中,图像质量评价(IQA)起着至关重要的作用。全参考图像质量评价(FR-IQA)是一种常见的方法,但在许多应用场景中,如图像去雾,可能无法获取到完整的参考图像。因此,半参考图像质量评价(RR-IQA)和无参考图像质量评价(NR-IQA)方法的研究日益受到关注。
早期的RR-IQA方法主要通过计算失真图像与参考图像之间的差异来进行评价,如均方误差、结构相似性指数等,直到近年来,研究者开始关注学习失真图像与参考图像之间的特定关系,包括建立模型预测失真程度、使用深度学习方法进行特征学习等。
而NR-IQA方法主要利用图像的局部统计特征和人类感知模型来预测图像质量,如MSE(均方误差)、SSIM(结构相似性指数)等指标。近年来,基于深度学习的方法如卷积神经网络(CNN)和循环神经网络(RNN)等被应用于NR-IQA,取得了显著的性能提升。半参考图像质量评价(RR-IQA)和无参考图像质量评价(NR-IQA)方法主要针对于不同可供参考的信息和标准做出的针对目标进行评价的一种方法。
针对评估图像质量主要还是通过手动设置一些特征,如亮度辨别、颜色外观等,来形成一个质量分数,这些方法存在一定的局限性,如针对特定失真类型设计,对其他类型失真的准确性略有偏颇,以及未能充分考虑图像中的局部结构和内容特征。而本文提出的IQA可以自适应地捕捉图像中各类特征,具有一定的优越性,能够更好的捕捉关键信息,针对失真类型的涵盖也更加的广泛。
III.方法ology
本文提出了一种新的去雾图像质量评价方法,该方法通过使用n个置信度将预测的分数转换为客观质量分数的思想,通过卷积神经网络得到的置信度可以自适应地捕捉图像中各类特征,并根据不同失真类型进行评估。此外,基于置信度的池化策略能够聚焦于最显著和重要的区域,更好地捕捉影响感知质量的关键信息。
可以通过监督学习的方式训练一个卷积神经网络的深度学习模型,来从图像中提取特征并生成置信度,采用一个带有人类观察者对图像质量的评分标签的图像数据集。然后,可以使用这个模型来生成图像的n个置信度,在半参考图像的图像质量评价(RR-IQA)中,可以预测失真图像和部分参考图像的置信度,计算两者置信度之间的差异,若差异较小,则失真图像的质量可能越高。最后,将这个差异转换为一个客观的质量分数,用以表示最终质量分数。
为了解决在许多场景下无法获取参考信息的问题,采用进一步将这种基于半参考图像的图像质量评价(RR-IQA)方法扩展为基于无参考图像的图像质量评价(NR-IQA)方法。具体来说,我们从图像的局部差异入手,利用在去雾图像中的隐藏质量信息,对无参考图像质量进行评估。
基于上述卷积神经网络模型,可以生成图像的全局和局部置信度,全局置信度可以捕捉图像的整体特征,如亮度和颜色分布等,而局部置信度可以捕捉图像的细节特征,如边缘和纹理等。接下来,使用最大池化或平均的池化策略,来从全局和局部中提取最重要的信息。将这个聚合后的置信度转换为一个客观的质量分数。这个分数可以用来评估图像的质量,它可以提供一种无需参考图像的图像质量评价方法。
IV. 实验和结果
A. 实验设置和数据集介绍
B. 比较实验(使用5-6个基础方法例如dcp psnr)
C. 结果分析和评估
D. 讨论与解释
V. 结论
A. 工作总结
B. 可能的扩展和未来工作方向
VI. 参考文献