《长津湖》影评文本数据清洗--(简易版)

《长津湖》python文本数据清洗

1.项目背景

​ 《长津湖》作为近年比较火的电影,它用来致敬曾经伟大的战斗前辈。此次项目为用python 和Kettle 对爬取到的《长津湖》电影短评进行数据清洗与数据可视化分析,然后应用python连接数据库技术将清洗后的数据保存到excel 中,然后再导入到数据库保存,本项目将简单模拟数据清洗一系列流程。

2.研究路线
影评数据爬取
数据清洗
数据可视化
数据导入mysql数据库
3.方案实施
3.1数据清洗(某个案例)

在python中编写数据清洗的代码,主要包括缺失值的删除,因为不知道缺失评价是怎么描述的,所以将缺失值进行删除处理。重复值、异常值进行删除,在代码中,我将删除短评字数不超过10个字的短评,其中,短评中出现空格也算一个字,清洗代码如下图所示:

import pandas as pd

# 数据加载
data = pd.read_csv("douban_comments.csv")
print("原始数据条数:%d"%len(data))
# 缺失值删除
data = data.dropna(axis=0,how="any")
print("缺失值删除后数据条数:%d"%len(data))
# 重复值删除,删除同一个人的评论,保留最近一次的
data = data.drop_duplicates(subset="name",keep="first")
print("重复值删除后数据条数:%d" %len(data))
# 删除异常值,评论过短的异常值
data["drop"] = data["comments"].map(lambda x: 1 if len(x)>10 else 0)
data = data[data["drop"] != 0]
print("删除异常后的数据条数:%d" %len(data))

data.loc[:,["name","date","rate","comments"]].to_excel("comments_cleaned.xlsx",index=False)
3.2数据可视化

这里,我就先不给出可视化代码了,大家可以突发奇想,做出自己满意的图片!!!

下面给出我做的可视化图片:
在这里插入图片描述

本文为课堂任务还没更新完毕,未完待续,下次继续!!!!

好的,我可以为您提供一些具体的步骤。 1. 使用 requests 库获取电影《长津湖》的影评数据 ``` import requests from bs4 import BeautifulSoup url = 'https://movie.douban.com/subject/1291828/comments?start={}&limit=20&sort=new_score&status=P' comments = [] for i in range(10): # 爬取前10页的数据 response = requests.get(url.format(i*20)) soup = BeautifulSoup(response.text, 'html.parser') comment_items = soup.select('.comment-item') for item in comment_items: comment = item.select('.short')[0].text.strip() comments.append(comment) ``` 2. 对获取的数据进行预处理 ``` import pandas as pd import jieba # 将评论数据转成 DataFrame 格式 df = pd.DataFrame(comments, columns=['comments']) # 对评论数据进行分词 df['words'] = df['comments'].apply(lambda x: jieba.lcut(x)) ``` 3. 进行可视化分析 ``` import matplotlib.pyplot as plt from wordcloud import WordCloud # 将所有评论的分词结果拼接成一个字符串 text = ' '.join(df['words'].sum()) # 生成词云 wordcloud = WordCloud(background_color='white', width=800, height=600).generate(text) # 绘制词云图 plt.figure(figsize=(10, 8)) plt.imshow(wordcloud, interpolation='bilinear') plt.axis('off') plt.show() ``` 这里使用了 jieba 库对评论数据进行分词,并使用了 wordcloud 库生成词云图。您可以根据需要对数据进行更加详细的分析和可视化。需要注意的是,在爬取网页数据时需要遵守相关法律法规,不得进行侵犯他人权益的行为。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值