数理统计第二次作业
前言
内容是在做题过程中用matlab计算答案的代码。
提示:以下是本篇文章正文内容,下面案例可供参考
一、题目
二、解题思路及代码
代码如下(示例):
%%第一题
%建议用max(Xn)做枢轴量,原因在于此题的均匀分布实在太好算了
%%第二题
%第二题样本个数有39个,属于大样本数据,泊松分布在大样本的情况下近似为正态分布。
A=[65.2 47.0 38.2 13.5 18.0 25.6 16.3 14.0 23.2 18.8 7.5 13.3 11.0 54.9 22.0 50.1 32.6 26.0 13.0 9.0 7.2 4.7 4.5 41.1 45.8 37.0 8.5 30.5 29.3 13.8 7.7 5.5 24.1 12.5 22.3 19.0 9.5 4.7 3.0]
format long
b=mean(A)
c=norminv(0.05/2)
up=b-sqrt(b/length(A))*c,low=b+sqrt(b/length(A))*c
%%第三题
a=0.8*0.6/sqrt(50)
b=norminv(0.01)
p=18/50
p+a*b,p-a*b
%%第四题
%小样本,无sigma
A=[57.3 58.1 58.7 66.7 58.6 61.9 59.0 64.4 62.6 64.9]
b=mean(A)
s=sqrt((1/(length(A)-1))*sum((A-b).^2))
c=tinv(0.05/2,length(A)-1)
b+s*c/sqrt(length(A)),b-s*c/sqrt(length(A))
%%第五题
%小样本,无sigma
A=[3.3 3.3 4.7 2.6 6.4 4.7 1.7 4.5 5.0 3.0]
b=mean(A)
s=sqrt((1/(length(A)-1))*sum((A-b).^2))
c=tinv(0.02/2,length(A)-1)%注意此题是98%的置信度
b+s*c/sqrt(length(A)),b-s*c/sqrt(length(A))
%%第六题
%这题没有讲数据是不是服从正态分布的随机数据,理论上来说我们需要进行皮尔逊卡方检验分布,但是由于没有学过,就当默认正态分布了。
A=[1.9 2.7 2.1 2.8 2.3 3.6 1.4 1.8 2.1 3.2 2.0]
b=mean(A)
s=sqrt((1/(length(A)-1))*sum((A-b).^2))
c=tinv(0.05/2,length(A)-1)
b+s*c/sqrt(length(A)),b-s*c/sqrt(length(A))
%%第七题
%小样本,标准差假设相等
n1=25,n2=23
s1=4000,s2=3200
x1=58550,x2=53700
S=sqrt((n1-1)*s1^2+(n2-1)*s2^2)
a=S*sqrt(1/n1+1/n2)
b=tinv(0.05,n1+n2-2)
x1-x2-a*b,x1-x2+a*b
%%第八题
%第一题当中没有说假设方差相等,所以在算自由度时采用v向下求整
A1=[58 69 55 65 88 52 99 76 45 86 55 79]
A2=[77 86 84 93 77 91 87 95 68 78 74 58]
x1=mean(A1)
x2=mean(A2)
s12=sum((A1-x1).^2),s22=sum((A2-x2).^2)
v=(s12/length(A1)+s22/length(A2)).^2/((s12/length(A1)).^2/(length(A1)-1)+(s22/length(A2)).^2/(length(A2)-1))
b=tinv(0.05/2,floor(v))
x1-x2-b*sqrt(s12/length(A1)+s22/length(A2)),x1-x2+b*sqrt(s12/length(A1)+s22/length(A2))
%第二题简单的F分布
c=finv(0.05/2,length(A1)-1,length(A2)-1)
c*s12/s22,1/c*s12/s22
%%第九题很简单,不多赘述
%%第十题,均值做的拒绝域,我认为是不太可能的,但是可以做f(x)<K
总结
祝大家期末不挂科!