概率论与数理统计-离散型随机变量基础知识(二)

     接着上一次的知识点,我们继续总结知识点,上一次在泊松分布相关知识还有一个泊松定理,若二项分布中的n足够大,同时参数p足够小,一般认为小于0.1为足够小,则二项分布可近似看为泊松分布,其参数\lambda =np。若还有其他较为重要的知识点,还希望各位看官能够指正。

     本次我们主要讨论数学期望与方差以及二位离散型随机变量。首先谈数学期望,数学期望与均值是有区别的,均值的计算方法为总量除个数,即得均值,数学期望的计算过程为,若已知随机变量X的分布律,则E(X)=\sum_{i=0}^{n}x_{i}p_{i},当然,一般情况下都是有限个的n,下面我们介绍常见分布的均值,这里就不证明了啊。首先是二项分布的均值,B\sim (n,p),其均值为np;泊松分布P\sim(\lambda ),泊松分布的均值为\lambda;接下来是几何分布,不晓得大家可还记得几何分布的表达式。P(X=k)=p(1-p)^{k-1},大家记住若某人命中靶心的概率为p,则其在第k次射击中首次命中的分布为几何分布,其均值为\frac{1}{p};下面是超几何分布,这个大家可以用这个案例记,假设有20个样品,其中有3个次品,从中随机摸5个球,求摸到的次品数的分布,这个分布就是超几何分布,超几何分布的均值为\frac{Mn}{N}

       下面主要谈数学期望的性质,主要有三条性质

(1) E(C)=C,常数的数学期望还是他本身。

(2) E(aX+b)=aE(X)+b

(3)E(G(X)+Q(X))=E(G(X))+E(Q(X))

        期望介绍完了,接下来是方差,方差的定义为D(X)=E\left [ X-E(X) \right ]^{2},由定义可知其表示的是各个量与均值的偏差的平方。下面介绍各个分布的方差。

分布二项分布泊松分布几何分布超几何分布
方差np(1-p)\lambda\frac{2-p}{p^{2}}\frac{n(N-n)(N-M)M}{N^{2}(N-1)}

下面继续介绍方差的性质

(1)  D(C)=0,即常数的方差为零

(2) D(aX+b)=a^{2}D(X)

(3)D(X)=E(X^{^{2}})-(E\left [ X \right ])^{2},这个公式较为重要,是计算方差的常用公式。

剩下的知识点包括边沿分布,独立性判断以及随机变量函数的期望与方差,这个在连续性随机变量中有相似知识点。

        

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值