概率论与数理统计-连续型随机变量基础知识(二)

    本次内容主要总结连续型随机变量的数学期望与方差,在离散型随机变量中也有该知识点,连续型随机变量的期望与方差如下:

一、数学期望

计算公式E(X)=\int_{-\propto }^{+\propto }x\varphi (x)dx,其中,\varphi (x)为随机变量的密度函数。

性质:

       (1)E(C)=C

       (2)E(aX+b)=aE(X)+b

常见分布的数学期望

分布均匀分布指数分布正态分布\Gamma分布
数学期望\frac{a+b}{2}\frac{1}{\lambda }\mu\frac{\alpha }{\beta }

二、方差

定义式:D(X)=\int_{-\propto }^{+\propto }[X-E(X)]^{2}\varphi (x)dx

性质:

        (1)D(C)=0

        (2)D(aX+b)=a^{2}D(X)

        (3)D(X)=E(X^{2})-[E(X)]^{^{2}},该公式常用作计算随机变量的方差

常见分布的方差

分布均匀分布指数分布正态分布\Gamma分布
方差\frac{1}{12}(b-a)^{2}\frac{1}{\lambda ^{2}}\sigma ^{2}\frac{\alpha }{\beta ^{2}}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值