出现报错可重新安装mkl-service解决
import torch
in_channels,out_channels = 5,10 #输入、输出的通道数
width,height = 100,100 #图像的大小
kernel_size = 3 #filters的大小
batch_size = 1
input = torch.randn(batch_size,in_channels,width,height)
conv_layer = torch.nn.Conv2d(in_channels,out_channels,kernel_size = kernel_size)
output = conv_layer(input)
print(input.shape)
print(output.shape)
print(conv_layer.weight.shape)
import torch
input = [3,4,6,5,7,2,4,6,8,2,1,6,7,8,4,9,7,4,6,2,3,7,5,4,1]
input = torch.Tensor(input).view(1,1,5,5) #B,C,W,H
conv_layer = torch.nn.Conv2d(1,1,kernel_size = 3,padding = 1,bias = False) #两个1分别为输入/输出通道数
kernel = torch.Tensor([1,2,3,4,5,6,7,8,9]).view(1,1,3,3) #输出通道数,输入通道数,W,H
conv_layer.weight.data = kernel.data #卷积层权重的初始化
output = conv_layer(input)
print(output)
import torch
input = [3,4,6,5,7,2,4,6,8,2,1,6,7,8,4,9,7,4,6,2,3,7,5,4,1]
input = torch.Tensor(input).view(1,1,5,5) #B,C,W,H
conv_layer = torch.nn.Conv2d(1,1,kernel_size = 3,stride = 2,bias = False) #两个1分别为输入/输出通道数
kernel = torch.Tensor([1,2,3,4,5,6,7,8,9]).view(1,1,3,3) #输出通道数,输入通道数,W,H
conv_layer.weight.data = kernel.data #卷积层权重的初始化
output = conv_layer(input)
print(output)
import torch
input = [3,4,6,5,2,4,6,8,1,6,7,8,9,7,4,6]
input = torch.Tensor(input).view(1,1,4,4) #B,C,W,H
maxpooling_layer = torch.nn.MaxPool2d(kernel_size = 2) #找每一簇最大的,步长会被默认设置为2
output = maxpooling_layer(input)
print(output)
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
class Net(torch.nn.Module):
def __init__(self):
super(Net,self).__init__()
self.conv1 = torch.nn.Conv2d(1,10,kernel_size = 5)
self.conv2 = torch.nn.Conv2d(10,20,kernel_size = 5)
self.pooling = torch.nn.MaxPool2d(2)
self.fc = torch.nn.Linear(320,10) #全连接层
def forward(self,x):
batch_size = x.size(0)
x = F.relu(self.pooling(self.conv1(x)))
x = F.relu(self.pooling(self.conv2(x)))
x = x.view(batch_size,-1)
x = self.fc(x)
return x
model = Net()
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
def train(epoch):
running_loss = 0.0
for batch_idx,data in enumerate(train_loader,0):
inputs,target = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs,target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d,%5d] loss: % .3f' % (epoch + 1,batch_idx + 1,running_loss / 2000))
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images,labels = data
outputs = model(images)
_,predicted = torch.max(outputs.data,dim = 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy on test set: %d %% [%d/%d]' % (100 * correct / total,correct,total))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()