刘老师的《Pytroch深度学习实践》 第十讲:卷积神经网络(基础篇) 代码

出现报错可重新安装mkl-service解决 

import torch
in_channels,out_channels = 5,10 #输入、输出的通道数
width,height = 100,100 #图像的大小
kernel_size = 3 #filters的大小
batch_size = 1

input = torch.randn(batch_size,in_channels,width,height)
conv_layer = torch.nn.Conv2d(in_channels,out_channels,kernel_size = kernel_size)

output = conv_layer(input)

print(input.shape)
print(output.shape)
print(conv_layer.weight.shape)

  

import torch

input = [3,4,6,5,7,2,4,6,8,2,1,6,7,8,4,9,7,4,6,2,3,7,5,4,1]
input = torch.Tensor(input).view(1,1,5,5) #B,C,W,H

conv_layer = torch.nn.Conv2d(1,1,kernel_size = 3,padding = 1,bias = False) #两个1分别为输入/输出通道数

kernel = torch.Tensor([1,2,3,4,5,6,7,8,9]).view(1,1,3,3) #输出通道数,输入通道数,W,H
conv_layer.weight.data = kernel.data #卷积层权重的初始化

output = conv_layer(input)
print(output)

 

import torch

input = [3,4,6,5,7,2,4,6,8,2,1,6,7,8,4,9,7,4,6,2,3,7,5,4,1]
input = torch.Tensor(input).view(1,1,5,5) #B,C,W,H

conv_layer = torch.nn.Conv2d(1,1,kernel_size = 3,stride = 2,bias = False) #两个1分别为输入/输出通道数

kernel = torch.Tensor([1,2,3,4,5,6,7,8,9]).view(1,1,3,3) #输出通道数,输入通道数,W,H
conv_layer.weight.data = kernel.data #卷积层权重的初始化

output = conv_layer(input)
print(output)

 

import torch

input = [3,4,6,5,2,4,6,8,1,6,7,8,9,7,4,6]
input = torch.Tensor(input).view(1,1,4,4) #B,C,W,H

maxpooling_layer = torch.nn.MaxPool2d(kernel_size = 2) #找每一簇最大的,步长会被默认设置为2

output = maxpooling_layer(input)
print(output)

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim


batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])

train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)

class Net(torch.nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.conv1 = torch.nn.Conv2d(1,10,kernel_size = 5)
        self.conv2 = torch.nn.Conv2d(10,20,kernel_size = 5)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(320,10) #全连接层

    def forward(self,x):
        batch_size = x.size(0)
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x)))
        x = x.view(batch_size,-1)
        x = self.fc(x)
        return x

model = Net()

criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

def train(epoch):
    running_loss = 0.0
    for batch_idx,data in enumerate(train_loader,0):
        inputs,target = data
        optimizer.zero_grad()

        outputs = model(inputs)
        loss = criterion(outputs,target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d,%5d] loss: % .3f' % (epoch + 1,batch_idx + 1,running_loss / 2000))
            running_loss = 0.0

def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images,labels = data
            outputs = model(images)
            _,predicted = torch.max(outputs.data,dim = 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test set: %d %% [%d/%d]' % (100 * correct / total,correct,total))

if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值