大模型企业应用落地系列六》基于大模型的对话式推荐系统》推荐引擎层

53 篇文章 1 订阅
45 篇文章 1 订阅

注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】

大模型企业应用落地系列六

基于大模型的对话式推荐系统》推荐引擎层

上一篇文章详细讲解了大模型管理层,本篇文章将详细介绍推荐引擎层。

4.推荐引擎层
推荐引擎层是现代推荐系统的核心,它通过一系列精心设计的模块协同工作,以提供个性化、高效且实时的推荐服务。这些模块涵盖了从离线算法的精细调整到在线服务的即时响应,从策略与建模的多样化探索到算法效果的细致评估,再到与大模型技术的深度融合。每个模块都致力于提升推荐系统的性能,确保用户获得最佳的推荐体验。接下来将逐一探讨这些关键模块,揭示它们如何共同构建起强大的推荐引擎。

1)离线推荐算法
推荐算法分为离线推荐算法、准实时推荐算法、在线实时推荐三种,其中离线是指T+1计算,一般每天夜间拉取最新的全量用户行为数据做计算,计算根据数据量可能需要几个小时,计算完后会把推荐结果更新到线上Redis缓存,如果离线算法服务宕机故障,并不影响线上的实时推荐,只是线上实时推荐是拿上一天计算好的离线推荐算法结果。离线算法一般宕机故障对线上没有明显影响,用户无感知,只是推荐准确率可能会稍微差一点。准实时推荐算法一般采用Kafka+Flink等流处理框架,对实时的用户行为毫秒级别分析处理,推荐结果也毫秒或秒级别更新线上Redis缓存,准实时推荐算法能保证融合当前最新用户行为,推荐更新颖及时,和离线推荐算法互补。在线实时推荐一般是Java Web服务实时获取用户行为和对话内容,结合用户实时对话输入和行为,从线上Redis缓存获取离线、准实时推荐候选推荐结果,然后进行重新精排序,把推荐相似度评分最高的几个商品推荐给用户。
在对话式推荐系统中,离线推荐算法层是构建个性化推荐体验的基石。这一层通过处理历史全量数据集,利用先进的算法模型来理解和预测用户偏好,生成初始推荐列表。以下是基于大模型的对话式推荐系统中离线推荐算法层的五类算法:
(1)深度因子分解机:深度因子分解机(Deep Factorization Machines,DeepFM)是一种结合了传统因子分解机(Factorization Machine,FM)和深度神经网络(Deep Neural Network,DNN)的推荐模型。它不仅能够捕捉到高阶特征间的相互作用,而且通过深度学习架构,能够学习复杂的非线性关系。在离线阶段,深度因子分解机通过对用户行为数据进行大规模训练,学习用户和物品的嵌入表示,以及这些表示间的交互模式,从而生成高质量的推荐列表。
(2)协同过滤算法:协同过滤算法(Collaborative Filtering,CF)是推荐系统中最经典的方法之一,它分为用户-用户协同过滤和物品-物品协同过滤两种形式。在离线阶段,算法通过分析用户的历史行为,识别用户之间的相似性或者物品之间的关联性,为用户推荐与其历史行为相似的其他用户喜欢的物品或与用户已知喜好相似的物品。协同过滤算法通过矩阵分解、邻域方法或深度学习等技术实现,以提高推荐的精度和覆盖率。
(3)Content-Based推荐:Content-Based推荐(Content-Based Recommendation,CBR)基于用户过去的喜好和物品的特征信息来做出推荐。在离线阶段,算法会分析用户对特定内容的兴趣,如电影的类型、导演、演员等,然后推荐具有类似特征的其他内容。通过深度学习模型,如卷积神经网络或循环神经网络,可以更准确地理解文本、图像或视频等多媒体内容的特征,从而提升推荐的个性化水平。
(4)多策略融合算法:多策略融合算法是在离线阶段综合运用多种推荐策略,如基于内容的推荐、协同过滤、流行度推荐、情境感知推荐等,以克服单一策略的局限性。通过加权平均、投票机制或深度强化学习等方法,算法可以生成一个更加全面和多样化的推荐列表,既考虑了用户的历史偏好,也考虑了实时的上下文信息,以及潜在的新颖性和多样性需求。
(5)基于知识图谱的推荐:基于知识图谱的推荐算法利用图结构来编码实体间的关系,如用户、物品、类别、品牌等,以及它们之间的联系。在离线阶段,算法通过图神经网络或路径排序网络等技术,探索知识图谱中的复杂关系和深层结构,从而揭示隐含的用户偏好和物品特性。这种方法能够增强推荐的连贯性和解释性,尤其是在处理长尾物品和冷启动问题时表现突出。
在上述每种推荐算法中,结合大模型的创新,深度学习和大模型的引入为提升推荐效果开辟了新途径。通过预训练的大模型或视觉多模态大模型,算法能够从更广泛的文本和图像数据中学习到更丰富的特征表示,从而增强推荐系统的理解和生成能力。此外,大模型还可以作为知识插件,将领域特定知识动态整合到推荐过程中,弥补了模型知识边界的不足,实现了更加智能和个性化的推荐体验。

2)准实时推荐算法
准实时推荐算法是连接离线模型和用户即时体验的关键环节。这一层通过高效处理实时数据流,结合预训练的大模型,提供准实时个性化的推荐。以下是准实时推荐算法的五个核心方面:
(1)用户行为数据流处理:用户行为数据流处理是准实时推荐系统的基础。系统需要能够实时捕获用户活动,如浏览、搜索、购买等,这些数据通过事件驱动的架构被迅速摄入。采用消息队列(如Kafka)、流处理框架(如Apache Flink或Spark Streaming)和实时数据库(如Redis),可以实现实时数据的低延迟处理。此外,通过实时ETL(提取、转换、加载)流程,数据被清洗、转换并准备用于模型输入,确保推荐系统能够及时反映用户最新的兴趣和偏好。
(2)准实时协同过滤:准实时协同过滤算法能够在用户行为数据流到达时立即更新推荐模型。这涉及到增量学习技术,允许模型在不完全重训的情况下吸收新数据,保持模型新鲜度。例如,通过在线梯度下降或随机梯度下降,模型权重可以随着每个新事件的到达而微调。此外,利用近似最近邻搜索技术,如Faiss或HNSW,可以在大规模用户-项目矩阵中快速定位相似用户或项目,实现即时的个性化推荐。
(3)准实时推荐策略融合:在准实时环境下,系统需要动态调整推荐策略,以应对不断变化的用户需求和环境。这可能涉及多种推荐算法的实时融合,如基于内容的推荐、协同过滤、热门推荐、新颖性推荐等。策略融合可以基于实时反馈和上下文信息,如时间、地点、设备类型等,通过加权、投票或深度强化学习等方法,动态决定最佳推荐策略组合,以最大化用户满意度和业务目标。
(4)实时特征计算更新:实时特征计算是准实时推荐系统的关键,它要求系统能够即时更新和利用用户、项目及上下文特征。这包括但不限于用户画像的实时刷新、项目属性的动态调整和上下文感知特征的实时计算。通过流式计算引擎和实时数据库,系统能够持续监控和分析用户行为,更新特征向量,确保推荐模型能够捕捉到最新的用户状态和偏好变化。
(5)准实时推荐结果生成:准实时推荐结果生成是指在用户请求到来时,系统能够迅速生成个性化推荐列表。这通常涉及到多阶段的推荐流程,首先是候选项目池的快速生成,利用倒排索引或图数据库等技术实现;其次是候选项目评分,通过预训练的大型语言模型对项目进行评分或排名;最后是结果排序和筛选,根据业务规则和用户反馈,对候选项目进行最终排序和优化,生成最终推荐列表。整个过程需要在极短的时间内完成,以保证用户体验的流畅性和响应性。
在准实时推荐算法层,融入大模型不仅能够处理自然语言,还能理解上下文和用户意图,使得推荐系统能够更精准地捕捉用户偏好,生成更有意义的推荐。此外,通过持续学习和在线微调,大模型能够快速适应用户行为的变化,保持推荐的时效性和个性化。在处理实时数据流和特征计算时,大模型的高效并行计算能力也极大地提升了系统的响应速度和处理能力,实现了真正的准实时推荐体验。

3)在线Web推荐服务
在线Web推荐服务负责将推荐系统与实际用户界面连接起来,提供实时、个性化和高性能的推荐体验。以下是该服务层的五个核心方面:
(1)实时用户偏好分析:实时用户偏好分析是在线Web推荐服务的核心功能之一。通过集成实时数据分析技术和机器学习算法,系统能够迅速捕捉和理解用户的行为模式、兴趣和偏好。这涉及到实时数据流处理以及机器学习模型实时预测的部署,以便在用户每次交互时更新其用户画像。通过大模型意图识别能力,系统可以解析用户在对话中的隐含意图和偏好,实现更深层次的个性化。
(2)智能实时精准排序:智能实时精准排序是确保推荐结果既相关又吸引用户的关键。基于用户当前的上下文和实时偏好,系统必须能够迅速生成和排序推荐列表,这涉及Rerank二次重排序算法。
(3)高并发缓存加速:高并发缓存加速是在线Web推荐服务的必要组件,用于处理大量并发用户请求,同时保持低延迟和高吞吐量。通过使用Redis缓存,热门数据和推荐结果可以被暂存,减少对后端数据库的访问,从而加快响应时间。此外,通过分布式缓存和负载均衡技术,系统能够有效地分配资源,确保即使在高峰时段也能保持稳定的服务质量。
(4)在线推荐结果呈现:在线推荐结果呈现涉及将推荐内容以用户友好的方式展现给用户。推荐结果呈现形式通过后台配置(前端样式代码配置在后台)的方式动态的返回给对话窗口展示,这样展现更加灵活,不用每次修改对话推荐前面界面代码,所配即所得。
(5)API网关访问授权:API网关访问授权是在线Web推荐服务的重要安全措施,用于控制对推荐系统的访问。通过实现OAuth 2.0、JWT或其他认证协议,系统可以验证用户身份和权限,确保只有授权的客户端才能访问推荐服务。此外,通过API限流和异常处理,系统可以防止滥用和恶意攻击,保护推荐系统的稳定性和安全性。网关还可以用于日志记录和监控,提供有关服务性能和使用情况的实时数据。
在线Web推荐服务为用户提供了高度个性化、实时响应和安全可靠的推荐体验。

4)推荐策略与建模
推荐策略与建模层上采用了多维的策略和技术,以提升推荐的精确度、个性化和互动性。以下是该层面的五个核心方面:
(1)推荐位组合策略:推荐位组合策略是指系统如何决定在对话的不同阶段和不同位置展示哪些推荐内容。这要求系统不仅要理解用户当前的需求,还要预测未来可能的兴趣点,以便在适当的时间和位置提供相关推荐。通过结合上下文感知、用户行为序列分析和强化学习,系统能够动态调整推荐位的策略,以最大化用户参与度和满意度。例如,系统可以优先展示用户最近浏览过的类别项目,或者根据用户的历史行为模式预测其可能感兴趣的新兴趋势。
(2)用户画像:用户画像通过聚合用户的基本信息、历史行为、偏好和反馈,构建一个综合性的用户模型。基于大模型的对话推荐系统从多源数据中提取高维特征,形成细致且动态的用户画像。这使得系统能够捕捉用户的长短期兴趣,识别其潜在需求,并做出更个性化的推荐。例如,系统可以识别出用户在工作日倾向于阅读科技新闻,而在周末则偏好观看娱乐视频,从而在相应时间推送合适的内容。
(3)多模态信息建模:多模态信息建模是处理推荐系统中包含文本、图像、音频和视频等多种类型数据的能力。对话式推荐系统通过跨模态融合技术,如多模态Transformer,能够理解和关联不同模态间的信息,从而提供更丰富和全面的推荐。例如,系统可以分析产品评论中的文字描述和相关图片,以更准确地理解产品的特性和用户对其的感知,进而做出更贴合用户需求的推荐。
(4)强化学习用户建模:强化学习是一种允许系统通过与环境的交互来学习最优策略的机器学习方法。在对话式推荐系统中,强化学习被用于构建动态的用户建模,通过实时观察用户行为和反馈,不断调整推荐策略以优化长期奖励。这使得系统能够主动探索用户的偏好,同时平衡探索(尝试新推荐)与利用(重复推荐已知喜好)之间的关系,以达到最佳的用户满意度。例如,系统可以学习到,在推荐新奇内容和维持用户舒适区之间找到平衡,既能激发用户的好奇心,又能保持其对平台的忠诚度。
(5)心理学用户建模:心理学用户建模是指将心理学原理和理论应用于用户建模,以更深刻地理解用户的心理状态和行为动机。基于大模型的对话式推荐系统可以利用情绪分析、社交网络分析和个性理论,构建更人性化和情境敏感的用户模型。例如,系统可以识别用户的情绪状态(如快乐、悲伤或焦虑),并据此调整推荐内容的基调和主题,以更好地响应用户的情感需求。同时,通过分析用户的社交网络和互动模式,系统能够洞察用户的社会身份和影响力,从而提供更符合其社会角色和期望的推荐。
通过结合推荐位组合策略、精细的用户画像、多模态信息建模、强化学习用户建模和心理学用户建模,系统能够提供既个性化又情境敏感的推荐,满足用户的多样化需求。

5)推荐算法效果评估
推荐算法效果评估涉及准确性和多样性,还包括新颖性、排序质量和用户体验等多个方面。以下是对推荐算法效果评估层的五个关键方面的详细介绍:
(1)AB测试平台:AB测试平台是评估推荐算法效果的重要工具,它通过随机分配用户群体来比较不同推荐策略的表现。AB 测试可以用来评估新算法或参数调整对用户参与度、满意度和转化率的影响。例如,可以设置对照组和实验组,分别使用旧的和新的推荐算法,然后监控关键指标的变化,如点击率、会话时长和用户反馈。AB 测试平台应该具备灵活的实验设计能力,支持快速迭代和大规模用户参与,确保评估结果的可靠性和有效性。
(2)准确性:准确性衡量推荐算法是否能够正确预测用户偏好和行为。准确性可以通过多种指标来评估,包括但不限于命中率(Hit Rate)、平均绝对误差(MAE)、均方根误差(RMSE)和归一化折损累积增益(NDCG)。这些指标可以帮助量化推荐的精度,即推荐的项目与用户实际兴趣的匹配程度。高准确性意味着系统能够提供高度相关和满意的内容给用户,从而提高用户粘性和活跃度。
(3)多样性:多样性评估推荐列表中项目间的差异性和覆盖范围,确保用户接触到不同类别的内容,避免推荐结果的单一化。多样性可以通过计算推荐项目间的相似度矩阵,然后应用多样性度量如逆多样性(Inverse Diversity)、覆盖率(Coverage)和新颖性(Novelty)来衡量。多样性不仅增加了用户的探索性体验,还可以防止推荐算法陷入局部最优,促进内容的公平曝光和生态系统健康。
(4) 新颖性:新颖性关注推荐内容的新鲜度和未知度,鼓励系统推荐用户未曾接触过但可能感兴趣的内容。新颖性可以通过计算推荐项目的流行度分布,然后应用新颖性度量如平均流行度排名或新颖度得分来评估。高新颖性意味着系统能够挖掘潜在的兴趣点,促进用户的惊喜感和发现乐趣,同时也有助于提升长尾内容的可见性和消费。
(5)排序质量指标:排序质量指标评估推荐列表中项目的排序顺序是否合理,即用户更偏好于列表前端的项目。排序质量可以通过计算位置偏好的度量如折损累积增益(Discounted Cumulative Gain,DCG)和平均折损累积增益(Mean Reciprocal Rank,MRR)来衡量。良好的排序质量意味着系统能够根据用户偏好和上下文信息,将最相关的项目排在前面,从而提高用户满意度和参与度。
综合以上五个方面的评估,可以构建一个多维度的推荐算法效果评估体系。通过定期进行AB测试和指标监控,可以持续优化推荐算法,提升整个系统的性能。

6)大模型与推荐系统融合
大模型与推荐系统的深度融合是实现高质量推荐的关键。以下是大模型与推荐系统融合层的五个核心方面,它们共同推动了推荐系统的智能化和个性化:
(1)大模型特征提取与整合:大模型能够从海量文本、图像、音频和视频数据中提取深层次的语义特征,这在传统推荐系统中难以实现。特征提取包括从用户评论、产品描述、社交媒体帖子和论坛讨论中捕捉情感、主题和趋势。整合这些特征,大模型可以构建一个全面的用户画像和项目特征库,为推荐系统提供丰富且细致的输入。
(2)大模型用户行为理解:大模型通过分析用户的历史行为、偏好和交互,能够理解复杂的用户行为模式。这包括识别用户在不同场景下的需求、兴趣转变和潜在的未表达需求。例如,Transformer模型可以处理时间序列数据,捕捉用户行为随时间的变化,这种深度理解有助于推荐系统提供更个性化的推荐,减少冷启动问题,并提高用户满意度。
(3)多模态推荐生成:大模型支持多模态数据处理,这意味着它们可以从多种类型的数据中学习并生成推荐。多模态推荐生成可以考虑用户的文本查询、图像上传和语音指令,结合商品的文本描述、图像和视频内容,以及社交媒体上的用户反馈。通过融合这些不同模态的信息,推荐系统可以提供更丰富、更全面的推荐,例如推荐与用户查询最匹配的商品图像或视频,或者根据用户的声音情感推荐适合心情的音乐。
(4)上下文感知推荐:大模型能够理解和利用上下文信息,这是实现情境化推荐的基础。在对话式推荐场景中,上下文可能包括用户当前的地理位置、时间、天气、最近的搜索历史和对话历史。通过将这些上下文信息编码到推荐过程中,大模型可以生成更加情境化和即时相关的推荐。例如,在旅行目的地推荐中,系统可以根据用户当前的位置和时间,推荐附近的热门景点或活动,或者在用户提到特定兴趣后,提供与之相关的深度信息和推荐。
(5)双塔模型召回:双塔模型是一种高效的推荐系统架构,它将用户和项目分别映射到同一潜在空间中,以便进行快速相似度计算和召回。大模型在双塔模型中的作用是增强特征编码,使得用户和项目的表示更加丰富和精细。具体而言,大模型可以用于预训练用户和项目塔的底层特征提取器,或者直接生成用户和项目的嵌入表示。这些表示随后用于计算用户和项目之间的相似度分数,从而实现高效和精确的召回。通过结合大模型的强大表示能力和双塔模型的高效检索机制,推荐系统能够在大规模项目库中快速找到最相关的内容,提供即时和个性化的推荐。
结合大模型的推荐系统架构通过上述五个方面的融合,能够显著提升推荐的精度、个性化和用户体验。大模型不仅增强了特征表示,还加深了对用户行为的理解,实现了多模态数据的整合,提供了上下文感知的推荐,并优化了推荐的召回过程。这种架构充分利用了大模型的高级特征提取和泛化能力,为推荐系统带来了前所未有的智能化水平,促进了更加人性化和高效的人机交互。

对话管理层具体实现

对话管理层是对话式推荐系统的核心组件,它负责处理和管理用户与系统之间的互动,确保推荐流程的连贯性和个性化。以下是对话管理层的六个关键方面,它们共同确保了高质量的对话体验和推荐效果。下一篇文章详细讲解对话管理层的具体实现,敬请关注。

大模型推荐技术发展趋势探讨

推荐系统的下一代发展趋势大概率走向基于大模型的互动式的对话式推荐,互动形式包括文本、语音、图像、视频等多模态融合。

更多的技术交流和探讨也欢迎加我个人微信chenjinglei66。

总结

此文章有对应的配套新书教材和视频:

【配套新书教材】
《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】
新书特色:本书从自然语言处理基础开始,逐步深入各种NLP热点前沿技术,使用了Java和Python两门语言精心编排了大量代码实例,契合公司实际工作场景技能,侧重实战。
全书共分为19章,详细讲解中文分词、词性标注、命名实体识别、依存句法分析、语义角色标注、文本相似度算法、语义相似度计算、词频-逆文档频率(TF-IDF)、条件随机场、新词发现与短语提取、搜索引擎Solr Cloud和Elasticsearch、Word2vec词向量模型、文本分类、文本聚类、关键词提取和文本摘要、自然语言模型(Language Model)、分布式深度学习实战等内容,同时配套完整实战项目,例如对话机器人实战、搜索引擎项目实战、推荐算法系统实战。
本书理论联系实践,深入浅出,知识点全面,通过阅读本书,读者不仅可以理解自然语言处理的知识,还能通过实战项目案例更好地将理论融入实际工作中。
《分布式机器学习实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】
新书特色:深入浅出,逐步讲解分布式机器学习的框架及应用配套个性化推荐算法系统、人脸识别、对话机器人等实战项目。

【配套视频】

推荐系统/智能问答/人脸识别实战 视频教程【陈敬雷】
视频特色:把目前互联网热门、前沿的项目实战汇聚一堂,通过真实的项目实战课程,让你快速成为算法总监、架构师、技术负责人!包含了推荐系统、智能问答、人脸识别等前沿的精品课程,下面分别介绍各个实战项目:
1、推荐算法系统实战
听完此课,可以实现一个完整的推荐系统!下面我们就从推荐系统的整体架构以及各个子系统的实现给大家深度解密来自一线大型互联网公司重量级的实战产品项目!
2、智能问答/对话机器人实战
由浅入深的给大家详细讲解对话机器人项目的原理以及代码实现、并在公司服务器上演示如何实际操作和部署的全过程!
3、人脸识别实战
从人脸识别原理、人脸识别应用场景、人脸检测与对齐、人脸识别比对、人脸年龄识别、人脸性别识别几个方向,从理论到源码实战、再到服务器操作给大家深度讲解!

自然语言处理NLP原理与实战 视频教程【陈敬雷】
视频特色:《自然语言处理NLP原理与实战》包含了互联网公司前沿的热门算法的核心原理,以及源码级别的应用操作实战,直接讲解自然语言处理的核心精髓部分,自然语言处理从业者或者转行自然语言处理者必听视频!

人工智能《分布式机器学习实战》 视频教程【陈敬雷】
视频特色:视频核心内容有互联网公司大数据和人工智能、大数据算法系统架构、大数据基础、Python编程、Java编程、Scala编程、Docker容器、Mahout分布式机器学习平台、Spark分布式机器学习平台、分布式深度学习框架和神经网络算法、自然语言处理算法、工业级完整系统实战(推荐算法系统实战、人脸识别实战、对话机器人实战)。

上一篇:大模型企业应用落地》基于大模型的对话式推荐系统完整介绍
下一篇:大模型企业应用落地系列二》基于大模型的对话式推荐系统》对话管理层

  • 19
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈敬雷-充电了么-CEO兼CTO

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值