函数说明:
cv.HoughCircles(image, method, dp, minDist, circles, param1, param2, minRadius, maxRadius)
image:参数图像8位,单通道,灰度输入图像。
method:参数方法检测方法,参数圆输出找到的圆的矢量的方法。上面用的是基于梯度的霍夫圆检测。
dp:累加器分辨率与图像分辨率的反比。例如,如果dp=1,累加器的分辨率与输入图像相同。如果dp=2,累加器一半的宽度和高度。
minDist:检测圆中心之间的最小距离。如果参数为太小,除了一个真正的圆外,可能还会错误地检测到多个相邻圆。如果是太大,有些圆可能会丢失。
param1:第一个方法特定参数。在hough_梯度的情况下,它是较高的通过Canny边缘检测器的两个阈值(较低的阈值小两倍)。
param2:第二个方法特定参数。在hough_梯度的情况下,它是检测阶段圆心的累加器阈值。它越小,就越多 可能会检测到假圆。与较大的累加器值相对应的圆先返回。
minRadius:最小半径最小圆半径。
maxRadius:最大半径最大圆半径。如果<=0,则使用最大图像尺寸。如果<0,则返回没有找到半径的中心
————————————————
版权声明:本文为CSDN博主「ProtocolYue」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_36747941/article/details/90731154