用Pytorch构建一个喵咪识别模型

本文档介绍了如何使用PyTorch构建一个猫咪识别模型,通过ResNet18网络进行图像分类。首先,导入所需库,设置超参数如批处理大小和学习率。接着,定义数据增强策略并创建数据加载器。然后,定义基于ResNet18的模型,并添加一个全连接层以适应二分类任务。最后,设定交叉熵损失函数和Adam优化器,开始训练模型。
摘要由CSDN通过智能技术生成

首先,我们需要导入必要的库和模块:


import torch

import torch.nn as nn

import torch.optim as optim

import torchvision.transforms as transforms

from torchvision.datasets import ImageFolder

from torch.utils.data import DataLoader


接下来,我们定义一些超参数:


# 超参数

batch_size = 32

learning_rate = 0.001

num_epochs = 10


然后,我们定义数据增强和数据加载器:


# 数据增强

transform = transforms.Compose([

    transforms.Resize((224, 224)),

    transforms.RandomHorizontalFlip(),

    transforms.ToTensor(),

    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

])

 

# 数据加载器

train_set = ImageFolder('train', transform=transform)

train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True)

 

test_set = Ima

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农学长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值