Python实战:爬取小红书评论并进行情感分析

本文介绍了如何使用Python爬取小红书评论,通过requests和BeautifulSoup抓取数据,然后利用pandas进行预处理,最后应用朴素贝叶斯分类器进行情感分析。旨在帮助读者掌握网络爬虫与机器学习结合的实际应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这篇博客中,我们将探讨如何使用Python爬取小红书的评论数据,并使用朴素贝叶斯分类器进行情感分析。本教程将涵盖从数据采集到模型训练和预测的完整流程。

准备工作

首先,确保你的Python环境中已安装以下库:

pip install pandas sklearn requests beautifulsoup4 selenium

selenium需要环境搭建

爬取小红书评论

我们将使用requestsBeautifulSoup库从小红书网站上爬取评论。小红书的API需要正确设置headerscookies才能正确响应,以下是爬取评论的关键代码片段(其实并不关键,我记得我代码里貌似是cookie里有加密,cursor可以遍历获取好像是。selenium主要就是为了解决cookie的问题太久了有点忘了 看后续得代码吧):

import requests
from bs4 import BeautifulSoup

# 配置请求头和cookies
headers = {
    # 省略部分配置,详见完整代码
    'user-agent': '你的User-Agent',
    'x-s': '加密串',
}

cookies = {
    # 根据实际情况填写cookie内容
}

# 定义爬取函数
def fetch_comments(note_id):
    url = f'https://edith.xiaohongshu.com/api/sns/web/v2/comment/page?note_id={note_id}'
    response = requests.get(url, headers=headers, cookies=cookies)
    data = response.json()
    comments = data['data']['comments']
    return comments

# 示例使用
comments = fetch_comments('示例笔记ID')
print(comments)

数据预处理

获取到评论数据后,需要将其转化为适合机器学习模型的格式。我们将使用pandas库来处理数据:

使用朴素贝叶斯进行情感分析

使用sklearn库中的MultinomialNB实现朴素贝叶斯分类器。我们首先需要将文本数据转换为向量形式,然后训练模型:

在CSDN平台上撰写一篇关于使用Python爬取小红书评论并使用朴素贝叶斯模型进行情感分析的教程,可以非常有效地帮助读者理解如何结合网络爬虫技术与机器学习技术。以下是一篇详细的CSDN博客文章草稿,结合了您提供的代码和分析。


Python实战:爬取小红书评论并进行情感分析

在这篇博客中,我们将探讨如何使用Python爬取小红书的评论数据,并使用朴素贝叶斯分类器进行情感分析。本教程将涵盖从数据采集到模型训练和预测的完整流程。

准备工作

首先,确保你的Python环境中已安装以下库:

 

pip install pandas sklearn requests beautifulsoup4 selenium

爬取小红书评论

我们将使用requestsBeautifulSoup库从小红书网站上爬取评论。小红书的API需要正确设置headerscookies才能正确响应,以下是爬取评论的关键代码片段:

 

效果如下

数据预处理

获取到评论数据后,需要将其转化为适合机器学习模型的格式。我们将使用pandas库来处理数据:

 

import pandas as pd # 假设已经爬取并存储为CSV文件 data = pd.read_csv('comments.csv')

使用朴素贝叶斯进行情感分析

使用sklearn库中的MultinomialNB实现朴素贝叶斯分类器。我们首先需要将文本数据转换为向量形式,然后训练模型:

 

结论

结合网络爬虫和机器学习进行数据分析,能够为业务或研究提供强大的支持。通过本教程,你不仅学会了如何爬取网页数据,还能进行基本的文本情感分析。。

希望本教程能够帮助你在Python数据科学的道路上更进一步!

小红书评论爬虫代码的实现需要了解以下几个步骤: 1. 确定要爬取的页面链接及需要的信息:例如,爬取某个商品的评论,需要获取评论内容、用户昵称、评分等信息。 2. 模拟登录:小红书需要登录后才能查看商品评论,因此需要模拟登录来获取访问权限。 3. 爬取评论数据:使用Python中的requests库发送GET请求获取评论页面的HTML源代码,使用BeautifulSoup库解析HTML获取需要的信息。 4. 存储数据:将获取到的数据存储到本地或者数据库中,以便后续处理或分析。 下面是一个简单的小红书评论爬虫代码示例,供参考: ``` import requests from bs4 import BeautifulSoup # 模拟登录 def login(): # 构造登录请求 login_url = 'https://passport.xiaohongshu.com/api/oauth/token/login' headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36', 'Content-Type': 'application/json' } data = { "countryCode": "86", "mobile": "your_mobile_number", "password": "your_password", "deviceId": "your_device_id" } response = requests.post(login_url, headers=headers, json=data) if response.status_code == 200: return response.json()['data']['token'] else: return None # 爬取评论数据 def crawl_comments(token): # 构造评论请求 comments_url = 'https://www.xiaohongshu.com/api/sns/v9/note/your_note_id/comments' headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36', 'Authorization': token } response = requests.get(comments_url, headers=headers) if response.status_code == 200: soup = BeautifulSoup(response.text, 'html.parser') comments = [] for comment in soup.find_all('div', {'class': 'comment'}): content = comment.find('div', {'class': 'comment__content'}).text.strip() user_name = comment.find('div', {'class': 'comment__header'}).find('a').text.strip() rating = comment.find('div', {'class': 'comment__header'}).find('span', {'class': 'comment__rating'}).text.strip() comments.append({'content': content, 'user_name': user_name, 'rating': rating}) return comments else: return None if __name__ == '__main__': # 模拟登录获取token token = login() if token is None: print('登录失败!') else: # 爬取评论数据 comments = crawl_comments(token) if comments is None: print('评论爬取失败!') else: # 打印评论数据 for comment in comments: print(comment['user_name'], comment['rating'], comment['content']) # 存储评论数据 # TODO: 存储评论数据到本地或数据库中
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值