音频处理和情绪识别是人工智能领域的重要分支,涉及到信号处理、机器学习等多个技术层面。本文将详细介绍如何使用Python和Librosa库进行音频特征提取,并利用这些特征来构建和训练一个用于情绪分类的深度学习模型。
环境准备
在开始之前,确保已安装以下Python库:
librosa
: 音频信号处理。numpy
: 数值计算。tensorflow
或keras
: 深度学习框架。sklearn
: 机器学习算法库。matplotlib
和seaborn
: 数据可视化。- pip install librosa numpy tensorflow sklearn matplotlib seaborn
-
音频特征提取
音频特征提取是音频分析的基础,本文使用Librosa库从音频文件中提取以下特征:
- 梅尔频谱系数(MFCCs):反映了人类听觉系统的特性,常用于语音识别。
- 梅尔频谱(Mel Spectrogram):表示音频信号的短时功率谱。
- 色度频率(Chroma STFT):关于音乐中十二个不同音符的强度信息。
- 光谱质心(Spectral Centroid):表示音频光谱的“重心”,用于描述声音的“亮度”。
- 光谱对比(Spectral Contrast):反映音频信号频带内的峰值和谷值的对比度。</