基于Python和Librosa的音频特征提取与情绪识别

本文详细介绍了如何使用Python的Librosa库进行音频特征提取,包括MFCCs、MelSpectrogram等,并利用这些特征构建基于TensorFlow和Keras的情绪分类深度学习模型。通过实际案例展示了模型在情感识别中的应用,对音频处理和机器学习项目有实用价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

音频处理和情绪识别是人工智能领域的重要分支,涉及到信号处理、机器学习等多个技术层面。本文将详细介绍如何使用Python和Librosa库进行音频特征提取,并利用这些特征来构建和训练一个用于情绪分类的深度学习模型。

环境准备

在开始之前,确保已安装以下Python库:

  • librosa: 音频信号处理。
  • numpy: 数值计算。
  • tensorflowkeras: 深度学习框架。
  • sklearn: 机器学习算法库。
  • matplotlibseaborn: 数据可视化。
  • pip install librosa numpy tensorflow sklearn matplotlib seaborn
  • 音频特征提取

    音频特征提取是音频分析的基础,本文使用Librosa库从音频文件中提取以下特征:

  • 梅尔频谱系数(MFCCs):反映了人类听觉系统的特性,常用于语音识别。
  • 梅尔频谱(Mel Spectrogram):表示音频信号的短时功率谱。
  • 色度频率(Chroma STFT):关于音乐中十二个不同音符的强度信息。
  • 光谱质心(Spectral Centroid):表示音频光谱的“重心”,用于描述声音的“亮度”。
  • 光谱对比(Spectral Contrast):反映音频信号频带内的峰值和谷值的对比度。</
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值