二阶常系数非齐次微分方程的八种解法
针对学习过程中常见的微分方程例如, y″-3 y ′ +2y= 2 x e x . y″-3y'+2y=2xe^{x}\,. y″-3y′+2y=2xex. 的通解,利用待定系数法、常数变易法、算子法、降阶法、积分因子法、拉普拉斯变换法以及MATLAB软件分别给出八种解法.
前言
这是二阶常系数线性非齐次线性微分方程,其通解为它对应的齐次方程的通解和非齐次方程本身的一个特解.先求所给方程对应的齐次方程的通解.与所给方程对应的齐次方程为
y″-3
y
′
+2y=
0
y″-3y'+2y=0
y″-3y′+2y=0
它的特征方程
r
2
−
3
r
+
2
=
0
r^{2}-3r+2=0
r2−3r+2=0
有两个实根
r
1
=1,
r
2
=2
r1 =1,r2 =2
r1=1,r2=2
于是与所给方程对应的齐次方程的通解为
Y=
C
1
e
x
+
C
2
e
2
x
Y =C1 e^{x} +C2e^{2x}
Y=C1ex+C2e2x
法一:待定系数法

法二:常识变易法

法三:算子法

法四:降阶法

法五:积分因子法

法六:积分因子法

法七:拉普拉斯变换法

法八:MATLAB法
