【数学】一道二阶常系数非齐次微分方程的八种解法

本文介绍了二阶常系数非齐次微分方程的八种不同解法,包括待定系数法、常数变易法、算子法、降阶法、积分因子法、拉普拉斯变换法以及使用MATLAB软件求解。文章以具体的微分方程为例,展示了每种方法的应用,并给出了对应的通解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

针对学习过程中常见的微分方程例如, y″-3 y ′ +2y= 2 x e x   . y″-3y'+2y=2xe^{x}\,. -3+2y=2xex. 的通解,利用待定系数法、常数变易法、算子法、降阶法、积分因子法、拉普拉斯变换法以及MATLAB软件分别给出八种解法.

前言

这是二阶常系数线性非齐次线性微分方程,其通解为它对应的齐次方程的通解和非齐次方程本身的一个特解.先求所给方程对应的齐次方程的通解.与所给方程对应的齐次方程为 y″-3 y ′ +2y= 0 y″-3y'+2y=0 -3+2y=0
它的特征方程
r 2 − 3 r + 2 = 0 r^{2}-3r+2=0 r23r+2=0
有两个实根
r 1 =1, r 2 =2 r1 =1,r2 =2 r1=1,r2=2
于是与所给方程对应的齐次方程的通解为
Y= C 1 e x + C 2 e 2 x Y =C1 e^{x} +C2e^{2x} Y=C1exC2e2x

法一:待定系数法
法二:常识变易法
法三:算子法
法四:降阶法
法五:积分因子法
法六:积分因子法
法七:拉普拉斯变换法
法八:MATLAB法
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

耗不尽的先生

小哥哥打赏的样子最酷啦~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值