贝叶斯分析

1.在医学研究中应用广泛,除了肿瘤新药研发外,它在多个医学领域都有重要作用。
例如,在抗感染领域,贝叶斯方法可以用于评估临床试验的治疗效果和设计适应性试验,以及探究因素间的关系网络、分析疾病传播机制、预测患者患病风险以及检测不良反应信号等。
2.贝叶斯方法在处理不确定性、动态更新、结合先验知识等方面具有优势,有助于在样本量较小的情况下利用现有信息改善推断的准确性。
3.在药动学研究中,最大后验贝叶斯法则可以准确预测
个体药动学参数
为个体化用药提供依据
4.贝叶斯分析还为不确定因素提供概率分布,而不是简单的点估计,从而在一定程度上量化不确定性问题,更好地进行分析和决策。
5.贝叶斯方法可以处理**病原体种类繁多、参数复杂的模型,**通过分层因素和交互作用参数,灵活地建模这种人群异质性。
6.在临床试验设计中,贝叶斯自适应设计允许在试验过程中动态调整试验方案,利用累积的数据对预先设定的设计进行修改。贝叶斯临床决策分析是临床诊断的有力工具,它可以帮助医疗保健专业人员做出更好的决策。

brms进行贝叶斯线性混合模型分析

1. 加载R包

library(MCMCglmm)
library(vcfR)
library(brms)
library(rstan)
library(ggplot2)

2. 使用VCF文件中的基因型数据来进行贝叶斯分析

#假设你已经使用vcfR包读取了VCF文件并提取了基因型矩阵
library(vcfR)

读取 VCF 文件

vcf_file <- “A_HaplotypeCaller.g.vcf.gz”
vcf <- read.vcfR(vcf_file, verbose = FALSE)

提取基因型数据

genotype_data <- extract.gt(vcf)

3. 准备数据框

#将基因型数据转换为数据框,并添加表型数据和群体信息

假设你有一个表型向量 phenotype 和一个群体向量 group

创建示例表型数据,共151个样本

phenotype <- rnorm(151, mean = 0, sd = 1)

创建群体信息,Group1有50个样本,Group2有51个样本,Group3有50个样本

group <- factor(c(rep(“Group1”, 50), rep(“Group2”, 51), rep(“Group3”, 50)))

创建一个示例 SNP 因子变量,假设每个样本对应一个 SNP

由于我们有151个样本,我们需要确保SNP向量的长度为151

SNP <- factor(c(rep(1:10, each = 15), rep(1, 1))) # 假设有10个SNP,每个SNP有15个重复,最后一个SNP有1个重复以匹配151个样本

创建数据框

data_frame <- data.frame(phenotype = phenotype, group = group, SNP = SNP)
library(brms)

设置模型

model <- brm(
phenotype ~ group + (1 | SNP),
data = data_frame,
family = gaussian(),
iter = 10000,
warmup = 2500,
chains = 4,
cores = 4,
seed = 123
)
model <- brm(
phenotype ~ group + (1 | SNP),
data = data_frame,
family = gaussian(),
iter = 2000, # 减少迭代次数
warmup = 500, # 减少烧入期迭代次数
chains = 2, # 减少链数
cores = 2, # 减少使用的CPU核心数
seed = 123
)

查看模型摘要

summary(model)
#phenotype 是你的表型数据,group 是一个因子变量,表示样本所属的群体。(1 | SNP) 表示每个 SNP 的随机效应。
Sys.getenv(“PATH”)

Sys.setlocale(“LC_CTYPE”, “English_United States.1252”)
capabilities()
version
R.version
sessionInfo()
system(“gcc --version”)
system(“make --version”)

合理的创建标题,有助于目录的生成

直接输入1次#,并按下space后,将生成1级标题。
输入2次#,并按下space后,将生成2级标题。
以此类推,我们支持6级标题。有助于使用TOC语法后生成一个完美的目录。

图片: Alt

带尺寸的图片: Alt

居中的图片: Alt

居中并且带尺寸的图片: Alt

当然,我们为了让用户更加便捷,我们增加了图片拖拽功能。

如何插入一段漂亮的代码片

博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片.

// An highlighted block
var foo = 'bar';

生成一个适合你的列表

  • 项目
    • 项目
      • 项目
  1. 项目1
  2. 项目2
  3. 项目3
  • 计划任务
  • 完成任务

创建一个表格

一个简单的表格是这么创建的:

项目Value
电脑$1600
手机$12
导管$1

设定内容居中、居左、居右

使用:---------:居中
使用:----------居左
使用----------:居右

第一列第二列第三列
第一列文本居中第二列文本居右第三列文本居左

SmartyPants

SmartyPants将ASCII标点字符转换为“智能”印刷标点HTML实体。例如:

TYPEASCIIHTML
Single backticks'Isn't this fun?'‘Isn’t this fun?’
Quotes"Isn't this fun?"“Isn’t this fun?”
Dashes-- is en-dash, --- is em-dash– is en-dash, — is em-dash

创建一个自定义列表

Markdown
Text-to- HTML conversion tool
Authors
John
Luke

如何创建一个注脚

一个具有注脚的文本。1

注释也是必不可少的

Markdown将文本转换为 HTML

KaTeX数学公式

您可以使用渲染LaTeX数学表达式 KaTeX:

Gamma公式展示 Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n1)!nN 是通过欧拉积分

Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t   . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=0tz1etdt.

你可以找到更多关于的信息 LaTeX 数学表达式here.

新的甘特图功能,丰富你的文章

2014-01-07 2014-01-09 2014-01-11 2014-01-13 2014-01-15 2014-01-17 2014-01-19 2014-01-21 已完成 进行中 计划一 计划二 现有任务 Adding GANTT diagram functionality to mermaid
  • 关于 甘特图 语法,参考 这儿,

UML 图表

可以使用UML图表进行渲染。 Mermaid. 例如下面产生的一个序列图:

张三 李四 王五 你好!李四, 最近怎么样? 你最近怎么样,王五? 我很好,谢谢! 我很好,谢谢! 李四想了很长时间, 文字太长了 不适合放在一行. 打量着王五... 很好... 王五, 你怎么样? 张三 李四 王五

这将产生一个流程图。:

链接
长方形
圆角长方形
菱形
  • 关于 Mermaid 语法,参考 这儿,

FLowchart流程图

我们依旧会支持flowchart的流程图:

Created with Raphaël 2.3.0 开始 我的操作 确认? 结束 yes no
  • 关于 Flowchart流程图 语法,参考 这儿.

导出与导入

导出

如果你想尝试使用此编辑器, 你可以在此篇文章任意编辑。当你完成了一篇文章的写作, 在上方工具栏找到 文章导出 ,生成一个.md文件或者.html文件进行本地保存。

导入

如果你想加载一篇你写过的.md文件,在上方工具栏可以选择导入功能进行对应扩展名的文件导入,
继续你的创作。


  1. 注脚的解释 ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值