1.在医学研究中应用广泛,除了肿瘤新药研发外,它在多个医学领域都有重要作用。
例如,在抗感染领域,贝叶斯方法可以用于评估临床试验的治疗效果和设计适应性试验,以及探究因素间的关系网络、分析疾病传播机制、预测患者患病风险以及检测不良反应信号等。
2.贝叶斯方法在处理不确定性、动态更新、结合先验知识等方面具有优势,有助于在样本量较小的情况下利用现有信息改善推断的准确性。
3.在药动学研究中,最大后验贝叶斯法则可以准确预测个体药动学参数,为个体化用药提供依据。
4.贝叶斯分析还为不确定因素提供概率分布,而不是简单的点估计,从而在一定程度上量化不确定性问题,更好地进行分析和决策。
5.贝叶斯方法可以处理**病原体种类繁多、参数复杂的模型,**通过分层因素和交互作用参数,灵活地建模这种人群异质性。
6.在临床试验设计中,贝叶斯自适应设计允许在试验过程中动态调整试验方案,利用累积的数据对预先设定的设计进行修改。贝叶斯临床决策分析是临床诊断的有力工具,它可以帮助医疗保健专业人员做出更好的决策。
brms进行贝叶斯线性混合模型分析
1. 加载R包
library(MCMCglmm)
library(vcfR)
library(brms)
library(rstan)
library(ggplot2)
2. 使用VCF文件中的基因型数据来进行贝叶斯分析
#假设你已经使用vcfR包读取了VCF文件并提取了基因型矩阵
library(vcfR)
读取 VCF 文件
vcf_file <- “A_HaplotypeCaller.g.vcf.gz”
vcf <- read.vcfR(vcf_file, verbose = FALSE)
提取基因型数据
genotype_data <- extract.gt(vcf)
3. 准备数据框
#将基因型数据转换为数据框,并添加表型数据和群体信息
假设你有一个表型向量 phenotype 和一个群体向量 group
创建示例表型数据,共151个样本
phenotype <- rnorm(151, mean = 0, sd = 1)
创建群体信息,Group1有50个样本,Group2有51个样本,Group3有50个样本
group <- factor(c(rep(“Group1”, 50), rep(“Group2”, 51), rep(“Group3”, 50)))
创建一个示例 SNP 因子变量,假设每个样本对应一个 SNP
由于我们有151个样本,我们需要确保SNP向量的长度为151
SNP <- factor(c(rep(1:10, each = 15), rep(1, 1))) # 假设有10个SNP,每个SNP有15个重复,最后一个SNP有1个重复以匹配151个样本
创建数据框
data_frame <- data.frame(phenotype = phenotype, group = group, SNP = SNP)
library(brms)
设置模型
model <- brm(
phenotype ~ group + (1 | SNP),
data = data_frame,
family = gaussian(),
iter = 10000,
warmup = 2500,
chains = 4,
cores = 4,
seed = 123
)
model <- brm(
phenotype ~ group + (1 | SNP),
data = data_frame,
family = gaussian(),
iter = 2000, # 减少迭代次数
warmup = 500, # 减少烧入期迭代次数
chains = 2, # 减少链数
cores = 2, # 减少使用的CPU核心数
seed = 123
)
查看模型摘要
summary(model)
#phenotype 是你的表型数据,group 是一个因子变量,表示样本所属的群体。(1 | SNP) 表示每个 SNP 的随机效应。
Sys.getenv(“PATH”)
Sys.setlocale(“LC_CTYPE”, “English_United States.1252”)
capabilities()
version
R.version
sessionInfo()
system(“gcc --version”)
system(“make --version”)
合理的创建标题,有助于目录的生成
直接输入1次#,并按下space后,将生成1级标题。
输入2次#,并按下space后,将生成2级标题。
以此类推,我们支持6级标题。有助于使用TOC
语法后生成一个完美的目录。
图片:
带尺寸的图片:
居中的图片:
居中并且带尺寸的图片:
当然,我们为了让用户更加便捷,我们增加了图片拖拽功能。
如何插入一段漂亮的代码片
去博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片
.
// An highlighted block
var foo = 'bar';
生成一个适合你的列表
- 项目
- 项目
- 项目
- 项目
- 项目1
- 项目2
- 项目3
- 计划任务
- 完成任务
创建一个表格
一个简单的表格是这么创建的:
项目 | Value |
---|---|
电脑 | $1600 |
手机 | $12 |
导管 | $1 |
设定内容居中、居左、居右
使用:---------:
居中
使用:----------
居左
使用----------:
居右
第一列 | 第二列 | 第三列 |
---|---|---|
第一列文本居中 | 第二列文本居右 | 第三列文本居左 |
SmartyPants
SmartyPants将ASCII标点字符转换为“智能”印刷标点HTML实体。例如:
TYPE | ASCII | HTML |
---|---|---|
Single backticks | 'Isn't this fun?' | ‘Isn’t this fun?’ |
Quotes | "Isn't this fun?" | “Isn’t this fun?” |
Dashes | -- is en-dash, --- is em-dash | – is en-dash, — is em-dash |
创建一个自定义列表
-
Markdown
- Text-to- HTML conversion tool Authors
- John
- Luke
如何创建一个注脚
一个具有注脚的文本。1
注释也是必不可少的
Markdown将文本转换为 HTML。
KaTeX数学公式
您可以使用渲染LaTeX数学表达式 KaTeX:
Gamma公式展示 Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n−1)!∀n∈N 是通过欧拉积分
Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=∫0∞tz−1e−tdt.
你可以找到更多关于的信息 LaTeX 数学表达式here.
新的甘特图功能,丰富你的文章
- 关于 甘特图 语法,参考 这儿,
UML 图表
可以使用UML图表进行渲染。 Mermaid. 例如下面产生的一个序列图:
这将产生一个流程图。:
- 关于 Mermaid 语法,参考 这儿,
FLowchart流程图
我们依旧会支持flowchart的流程图:
- 关于 Flowchart流程图 语法,参考 这儿.
导出与导入
导出
如果你想尝试使用此编辑器, 你可以在此篇文章任意编辑。当你完成了一篇文章的写作, 在上方工具栏找到 文章导出 ,生成一个.md文件或者.html文件进行本地保存。
导入
如果你想加载一篇你写过的.md文件,在上方工具栏可以选择导入功能进行对应扩展名的文件导入,
继续你的创作。
注脚的解释 ↩︎