图论-09

09-网络流理论
注:所写主要参考为许胤龙《图论导引》,因觉得此书所写不合理,故附参考张先迪《图论及其应用》

网络与流函数

  • 网络:一个网络可以定义为一个四元组 N = ( D , s , t , c ) N=(D,s,t,c) N=(D,s,t,c),其中
    • D D D是一个若连通的有向图
    • s , t ∈ V ( D ) s,t\in V(D) s,tV(D),分别称为
    • c : E ( D ) → R c:E(D)\rightarrow R c:E(D)R容量函数,任给 e ∈ E ( D ) , c ( e ) ≥ 0 e\in E(D),c(e)\geq0 eE(D),c(e)0为边 e e e容量
  • 流函数:网络 N = ( D , s , t , c ) N=(D,s,t,c) N=(D,s,t,c)上的流函数 f : E ( D ) → R f:E(D)\rightarrow R f:E(D)R,要求满足
    • 任给 e ∈ E ( D ) e\in E(D) eE(D),都有 c ( e ) ≥ f ( e ) ≥ 0 c(e)\geq f(e)\geq0 c(e)f(e)0
    • 任给 v ∈ V ( D ) − s , t v\in V(D)-{s,t} vV(D)s,t,都有 ∑ e ∈ α ( t ) f ( e ) − ∑ e ∈ β ( t ) f ( e ) = 0 \sum_{e\in\alpha(t)}f(e)-\sum_{e\in\beta(t)}f(e)=0 eα(t)f(e)eβ(t)f(e)=0,其中, α ( v ) \alpha(v) α(v)为以 v v v为头的边集, β ( v ) \beta(v) β(v)为以 v v v为尾的边集。
  • 流量 V a l ( f ) = ∑ e ∈ α ( t ) f ( e ) − ∑ e ∈ β ( t ) f ( e ) = ∑ e ∈ β ( s ) f ( e ) − ∑ e ∈ α ( s ) f ( e ) Val(f)=\sum_{e\in\alpha(t)}f(e)-\sum_{e\in\beta(t)}f(e)=\sum_{e\in\beta(s)}f(e)-\sum_{e\in\alpha(s)}f(e) Val(f)=eα(t)f(e)eβ(t)f(e)=eβ(s)f(e)eα(s)f(e)
  • :给定网络 N = ( D , s , t , c ) , S ⊂ V ( D ) N=(D,s,t,c),S\subset V(D) N=(D,s,t,c),SV(D),满足 s ∈ S , t ∈ S ‾ = V ( D ) − S s\in S,t\in \overline{S}=V(D)-S sS,tS=V(D)S,则称 ( S , S ‾ ) = { e = ( u , v ) ∣ e ∈ E ( D ) , u ∈ S , v ∈ S ‾ } (S,\overline{S})=\{e=(u,v)|e\in E(D),u\in S,v\in \overline{S}\} (S,S)={e=(u,v)eE(D),uS,vS}为网络 N N N的一个
  • 截量:称 C ( S , S ‾ ) = ∑ e ∈ ( S , S ‾ ) c ( e ) C(S,\overline{S})=\sum_{e\in (S,\overline{S})}c(e) C(S,S)=e(S,S)c(e) ( S , S ‾ ) (S,\overline{S}) (S,S)截量
  • 最小截:截量最小的截称为最小截
  • 定理:设 f f f是网络 N = ( D , s , t , c ) N=(D,s,t,c) N=(D,s,t,c)的流函数, ( S , S ‾ ) (S,\overline{S}) (S,S)是其一个截,则有 V a l ( f ) = ∑ e ∈ ( S , S ‾ ) f ( e ) − ∑ e ∈ ( S ‾ , S ) f ( e ) Val(f)=\sum_{e\in(S,\overline{S})}f(e)-\sum_{e\in(\overline{S},S)}f(e) Val(f)=e(S,S)f(e)e(S,S)f(e)
    • 直观来看,除 s s s t t t外,其余顶点的流入流量和流出流量是抵消的,所以从 S S S流入 S ‾ \overline{S} S的流量减去从 S ‾ \overline{S} S流回 S S S的流量理应是从源 s s s流入汇 t t t的净流量
    • 推论:设 f f f是网络 N = ( D , s , t , c ) N=(D,s,t,c) N=(D,s,t,c)的流函数, ( S , S ‾ ) (S,\overline{S}) (S,S)是其一个截,若 V a l ( f ) = C ( S , S ‾ ) Val(f)=C(S,\overline{S}) Val(f)=C(S,S),则 f f f是最大流, ( S , S ‾ ) (S,\overline{S}) (S,S)是最小截

F o r d − F u l k e r s o n Ford-Fulkerson FordFulkerson算法

  • 正向边 e e e的方向与 P ( s , u ) P(s,u) P(s,u)方向相同,称 e e e P P P正向边
  • 反向边 e e e的方向与 P ( s , u ) P(s,u) P(s,u)方向不相同,称 e e e P P P反向边
  • 未满载边:若 e e e P ( s , u ) P(s,u) P(s,u)正向边,且 f ( e ) < c ( e ) f(e) < c(e) f(e)<c(e),则称 e e e未满载边
  • 满载边:若 e e e P ( s , u ) P(s,u) P(s,u)正向边,且 f ( e ) = c ( e ) f(e) = c(e) f(e)=c(e),则称 e e e满载边
  • 零载边:若 e e e P ( s , u ) P(s,u) P(s,u)反向边,且 f ( e ) = 0 f(e) = 0 f(e)=0,则称 e e e零载边
  • 正载边:若 e e e P ( s , u ) P(s,u) P(s,u)反向边,且 f ( e ) > 0 f(e) > 0 f(e)>0,则称 e e e正载边
  • 可增载量:边 e e e的可增载量为 l ( e ) = { c ( e ) − f ( e ) , e 是 正 向 边 f ( e ) , e 是 反 向 边 l(e)=\begin{cases}c(e)-f(e), & e是正向边\\ f(e), & e是反向边\end{cases} l(e)={c(e)f(e)f(e),ee P ( s , u ) P(s,u) P(s,u)的可增载量 l ( P ) = min ⁡ e ∈ E ( P ) l ( e ) l(P)=\min_{e\in E(P)}l(e) l(P)=mineE(P)l(e)
  • 未满载轨道:若 l ( P ) > 0 l(P)>0 l(P)>0,则称 P ( s , v ) P(s,v) P(s,v)未满载轨道
  • 满载轨道:若 l ( P ) = 0 l(P)=0 l(P)=0,则称 P ( s , v ) P(s,v) P(s,v)满载轨道
  • 可增载轨道:若 l ( P ) > 0 l(P)>0 l(P)>0 v = t v=t v=t,则称 P ( s , t ) P(s,t) P(s,t)是网络上关于 f f f可增载轨道
  • 引理:设 f f f是网络 N = ( D , s , t , c ) N=(D,s,t,c) N=(D,s,t,c)的流函数, P ( s , t ) P(s,t) P(s,t) N N N上关于 f f f的可增载轨道,重新定义 f ‾ : E ( D ) → R \overline{f}:E(D)\rightarrow R f:E(D)R f ‾ ( e ) = { f ( e ) + l ( P ) , e 是 正 向 边 f ( e ) − l ( P ) , e 是 负 向 边 f ( e ) , e 其 他 \overline{f}(e)=\begin{cases}f(e)+l(P), & e是正向边 \\ f(e)-l(P), & e是负向边 \\ f(e), & e其他\end{cases} f(e)=f(e)+l(P),f(e)l(P),f(e),eee,则 f ‾ \overline{f} f是网络 N N N的流函数,且 V a l ( f ‾ ) = V a l ( f ) + l ( P ) Val(\overline{f})=Val(f)+l(P) Val(f)=Val(f)+l(P)
  • 可增载轨道算法
    • 输入:网络 N = ( D , s , t , c ) N=(D,s,t,c) N=(D,s,t,c),流函数 f f f
    • 输出:一条可增载轨道,或指出当前流函数是最大流
    • 初始化: S = { s } S=\{s\} S={s};令 p r e v ( s ) = ∗ prev(s)=* prev(s)=
    • 扩增轨道1:若存在 u ∈ S , v ∈ S ‾ u\in S,v\in \overline{S} uS,vS,使得 ( u , v ) ∈ E ( D ) (u,v)\in E(D) (u,v)E(D)且边 ( u , v ) (u,v) (u,v)未满载,则令 S ← S ∪ { v } , p r e v ( v ) = u S\leftarrow S\cup\{v\},prev(v)=u SS{v},prev(v)=u
    • 扩增轨道2:当扩增轨道1无法增加时,若存在 u ∈ S , v ∈ S ‾ u\in S,v\in \overline{S} uS,vS,使得 ( v , u ) ∈ E ( D ) (v,u)\in E(D) (v,u)E(D)且边 ( v , u ) (v,u) (v,u)正载,则令 S ← S ∪ { v } , p r e v ( v ) = u S\leftarrow S\cup\{v\},prev(v)=u SS{v},prev(v)=u
    • 结束条件:两方法均无法扩增或 t ∈ S t\in S tS时,结束算法
  • F o r d − F u l k e r s o n Ford-Fulkerson FordFulkerson最大流算法
    • 输入:网络 N = ( D , s , t , c ) N=(D,s,t,c) N=(D,s,t,c)
    • 输出:最大流函数 f f f
    • 初始化:取初始流函数 f f f,如 f ( e ) ≡ 0 f(e)\equiv0 f(e)0
    • 构造新流函数:调用可增载轨道算法。若找到可增载轨道 P ( s , t ) P(s,t) P(s,t),如引理当中一样,构造新的流函数 f ‾ \overline{f} f,直至无法找到可增载轨道,算法结束

容量有上下界的网络最大流

  • 容量上界/下界:在一个容量有上下界的网络中 V = ( D , s , t , b , c ) V=(D,s,t,b,c) V=(D,s,t,b,c),其中 ∀ e ∈ E ( D ) , c ( e ) ≥ b ( e ) ≥ 0 \forall e\in E(D),c(e)\geq b(e)\geq 0 eE(D),c(e)b(e)0,为边 e e e容量上界容量下界
  • 可行流:网络 N = ( D , s , t , b , c ) N=(D,s,t,b,c) N=(D,s,t,b,c)上的流函数定义为 f : E ( D ) → R f:E(D)\rightarrow R f:E(D)R,满足
    • ∀ e ∈ E ( D ) \forall e\in E(D) eE(D),都有 c ( e ) ≥ f ( e ) ≥ b ( e ) c(e)\geq f(e)\geq b(e) c(e)f(e)b(e)
    • 任给 v ∈ V ( D ) − { s , t } v\in V(D)-\{s,t\} vV(D){s,t},都有 ∑ e ∈ α ( v ) f ( e ) − ∑ e ∈ β ( v ) f ( e ) = 0 \sum_{e\in\alpha(v)}f(e)-\sum_{e\in\beta(v)}f(e)=0 eα(v)f(e)eβ(v)f(e)=0
    • 因容量有上下界的流函数不一定存在,故称为可行流
  • 伴随网络伴随网络是一个容量仅有上界的一般网络,给定容量有上下界网络 N = ( D , s , t , b , c ) N=(D,s,t,b,c) N=(D,s,t,b,c),定义 N N N伴随网络为一般的网络 N ′ = ( D ′ , s ′ , t ′ , c ′ ) N'=(D',s',t',c') N=(D,s,t,c),其中
    • V ( D ′ ) = V ( D ) ∪ { s ′ , t ′ } V(D')=V(D)\cup\{s',t'\} V(D)=V(D){s,t}
    • E ( D ′ ) = E ( D ) ∪ { ( s ′ , v ) , ( v , t ′ ) ∣ v ∈ V ( D ) } ∪ { ( s , t ) , ( t , s ) } E(D')=E(D)\cup\{(s',v),(v,t')|v\in V(D)\}\cup\{(s,t),(t,s)\} E(D)=E(D){(s,v),(v,t)vV(D)}{(s,t),(t,s)}
    • s ′ s' s t ′ t' t分别为伴随网络 N ′ N' N的源与汇
    • 容量函数 c ′ c' c定义为 c ′ ( e ) = { c ( e ) − b ( e ) , e ∈ E ( D ) ∑ e ∈ α ( v ) b ( e ) , e = ( s ′ , v ) , v ∈ V ( D ) ∑ e ∈ β ( v ) b ( e ) , e = ( v , t ′ ) , v ∈ V ( D ) + ∞ , e = ( s , t ) 或 ( t , s ) c'(e)=\begin{cases}c(e)-b(e), & e\in E(D)\\ \sum_{e\in\alpha(v)}b(e), & e=(s',v),v\in V(D) \\ \sum_{e\in\beta(v)}b(e), & e=(v,t'),v\in V(D) \\ +\infty, & e=(s,t)或(t,s)\end{cases} c(e)=c(e)b(e),eα(v)b(e),eβ(v)b(e),+,eE(D)e=(s,v),vV(D)e=(v,t),vV(D)e=(s,t)(t,s)
  • 定理:给定网络 N = ( D , s , t , b , c ) N=(D,s,t,b,c) N=(D,s,t,b,c),其伴随网络为 N ′ = ( D ′ , s ′ , t ′ , c ′ ) N'=(D',s',t',c') N=(D,s,t,c),则 N N N中存在可行流,当且仅当 N ′ N' N中最大流使得任给 v ∈ V ( D ) v\in V(D) vV(D),边 ( s ′ , v ) (s',v) (s,v)都满载
  • 容量有上下界网络的最大流算法
    • 输入:容量有上下界网络 N = ( D , s , t , b , c ) N=(D,s,t,b,c) N=(D,s,t,b,c)
    • 输出:最大流函数 f f f,或断定 N N N没有可行流
    • 构造 N ′ N' N;构造 N N N的伴随网络 N ′ N' N
    • N ′ N' N最大流函数:用 2 F 2F 2F算法求 N ′ N' N的最大流函数
    • 判断上述定理:若不满足上述定理,则结束算法无可行流,否则令 f ( e ) = f ′ ( e ) + b ( e ) f(e)=f'(e)+b(e) f(e)=f(e)+b(e)
    • N N N最大流函数:以 f f f作为初始流函数, 2 F 2F 2F算法即可

有供需需求的网络流

  • 有供需约束的网络:定义六元组 N = ( D , X , Y , σ , ρ , c ) N=(D,X,Y,\sigma,\rho,c) N=(D,X,Y,σ,ρ,c)
    • D D D是一个弱连通的有向图
    • X = { x 1 , x 2 , ⋯   , x m } ⊆ V ( D ) X=\{x_1,x_2,\cdots,x_m\}\subseteq V(D) X={x1,x2,,xm}V(D)是源集合
    • Y = { y 1 , y 2 , ⋯   , y n } ⊆ V ( D ) Y=\{y_1,y_2,\cdots,y_n\}\subseteq V(D) Y={y1,y2,,yn}V(D)是汇集合
    • σ : X → R \sigma:X\rightarrow R σ:XR σ ( x i ) \sigma(x_i) σ(xi)表示产地 x i x_i xi的产量
    • ρ : Y → R \rho:Y\rightarrow R ρ:YR ρ ( y j ) \rho(y_j) ρ(yj)表示消费市场 y j y_j yj的需求量
    • c : E ( D ) → R c:E(D)\rightarrow R c:E(D)R为容量函数,任给 e ∈ E ( D ) e\in E(D) eE(D) c ( e ) c(e) c(e)为边 e e e的容量
  • 有供需约束网络的流函数 f : E ( D ) → R f:E(D)\rightarrow R f:E(D)R,满足
    • 任给 e ∈ E ( D ) e\in E(D) eE(D),都有 0 ≤ f ( e ) ≤ c ( e ) 0\leq f(e)\leq c(e) 0f(e)c(e)
    • 任给 v ∈ V ( D ) − X ∪ Y v\in V(D)-X\cup Y vV(D)XY,都有普 ∑ e ∈ α ( v ) f ( e ) − ∑ e ∈ β ( v ) f ( e ) = 0 \sum_{e\in\alpha(v)}f(e)-\sum_{e\in\beta(v)}f(e)=0 eα(v)f(e)eβ(v)f(e)=0
    • 任给 1 ≤ i ≤ m 1\leq i\leq m 1im,都有 ∑ e ∈ β ( x i ) f ( e ) − ∑ e ∈ α ( x i ) f ( e ) ≤ σ ( x i ) \sum_{e\in\beta(x_i)}f(e)-\sum_{e\in\alpha(x_i)}f(e)\leq\sigma(x_i) eβ(xi)f(e)eα(xi)f(e)σ(xi)
    • 任给 1 ≤ j ≤ n 1\leq j\leq n 1jn,都有 ∑ e ∈ α ( y j ) f ( e ) − ∑ e ∈ β ( y j ) f ( e ) ≥ ρ ( x i ) \sum_{e\in\alpha(y_j)}f(e)-\sum_{e\in\beta(y_j)}f(e)\geq\rho(x_i) eα(yj)f(e)eβ(yj)f(e)ρ(xi)
  • 定理:给定供需约束的网络 N = ( D , X , Y , σ , ρ , c ) N=(D,X,Y,\sigma,\rho,c) N=(D,X,Y,σ,ρ,c) N N N有可行流充要条件是:任给 S ⊆ V ( D ) S\subseteq V(D) SV(D),都满足 C ( ( S , S ‾ ) ) ≥ ρ ( Y ∩ S ‾ ) − σ ( X ∩ S ‾ ) C((S,\overline{S}))\geq\rho(Y\cap\overline{S})-\sigma(X\cap\overline{S}) C((S,S))ρ(YS)σ(XS)
  • 附加网络:给定有供需约束的网络 N = ( D , X , Y , σ , ρ , c ) N=(D,X,Y,\sigma,\rho,c) N=(D,X,Y,σ,ρ,c),定义 N N N附加网络为一般的网络 N ′ = ( D ′ , x 0 , y 0 , c ′ ) N'=(D',x_0,y_0,c') N=(D,x0,y0,c),其中
    • V ( D ′ ) = V ( D ) ∪ { x 0 , y 0 } V(D')=V(D)\cup\{x_0,y_0\} V(D)=V(D){x0,y0}
    • E ( D ′ ) = E ( D ) ∪ { ( x 0 , x i ) ∣ i = 1 , 2 , ⋯   , m } ∪ { ( y j , y 0 ) ∣ j = 1 , 2 , ⋯   , n } E(D')=E(D)\cup\{(x_0,x_i)|i=1,2,\cdots,m\}\cup\{(y_j,y_0)|j=1,2,\cdots,n\} E(D)=E(D){(x0,xi)i=1,2,,m}{(yj,y0)j=1,2,,n}
    • x 0 x_0 x0 y 0 y_0 y0分别为附加网络 N ′ N' N的源与汇
    • 容量函数 c ′ c' c定义为 c ′ ( e ) = { c ( e ) , e ∈ E ( D ) σ ( x i ) , e = ( x 0 , x i ) ρ ( y j ) , e = ( y j , y 0 ) c'(e)=\begin{cases}c(e), & e\in E(D)\\ \sigma(x_i), & e=(x_0,x_i) \\ \rho(y_j), & e=(y_j,y_0)\end{cases} c(e)=c(e),σ(xi),ρ(yj),eE(D)e=(x0,xi)e=(yj,y0)
  • 定理:给定有供需约束网络 N = ( D , X , Y , σ , ρ , c ) N=(D,X,Y,\sigma,\rho,c) N=(D,X,Y,σ,ρ,c),其附加网络为 N ′ = ( D ′ , x 0 , y 0 , c ′ ) N'=(D',x_0,y_0,c') N=(D,x0,y0,c),则 N N N中存在可行流,当且仅当 N ′ N' N中最大流 f ′ f' f使得:任给 1 ≤ j ≤ n 1\leq j\leq n 1jn f ′ ( ( y j , y 0 ) ) = c ′ ( ( y j , y 0 ) ) f'((y_j,y_0))=c'((y_j,y_0)) f((yj,y0))=c((yj,y0))
  • 有供需约束网络的可行流算法
    • 输入:有供需约束的网络 N = ( D , X , Y , σ , ρ , c ) N=(D,X,Y,\sigma,\rho,c) N=(D,X,Y,σ,ρ,c)
    • 输出: N N N的可行流函数 f f f,或断定 N N N没有可行流
    • 构造 N ′ N' N;构造 N N N的附加网络 N ′ N' N
    • N ′ N' N最大流函数:用 2 F 2F 2F算法求 N ′ N' N的最大流函数 f ′ f' f
    • 判断上述定理:若不满足上述定理,则结束算法无可行流,否则令 f ( e ) = f ′ ( e ) f(e)=f'(e) f(e)=f(e) f ( e ) f(e) f(e)即为 N N N的可行流,算法结束

网络流在连通度中的应用

  • 循环:给定有向图 D = ( V , E ) D=(V,E) D=(V,E) f : E → R f:E\rightarrow R f:ER D D D上的边权函数,若 f f f满足,任给 v ∈ V v\in V vV都有 ∑ e ∈ α ( v ) f ( e ) − ∑ e ∈ β ( v ) f ( e ) = 0 \sum_{e\in\alpha(v)}f(e)-\sum_{e\in\beta(v)}f(e)=0 eα(v)f(e)eβ(v)f(e)=0,则称 f f f D D D上的一个循环
  • 支撑:设 f f f是集合 S S S上的实函数,即 f : S → R f:S\rightarrow R f:SR,则称 S S S中函数值不为零的元素为对应的边子集为 f f f支撑
  • 引理:设 f f f是有向图 D D D上非零的循环,即存在 e ∈ E ( D ) e\in E(D) eE(D),使得 f ( e ) ≠ 0 f(e)\neq0 f(e)=0,则 f f f的支撑中含有一个圈(无向圈);若 f f f是非负函数,则 f f f的支撑中含有一个有向圈
  • 导出循环:假定 C C C是有向图 D D D中一个无向圈,定义 C C C的方向, e e e C C C方向一致,为正向边,否则,为反向边,正向边集合为 E ( C + ) E(C^+) E(C+),反向边为 E ( C − ) E(C^-) E(C)导出循环 f C f_C fC f C ( e ) = { 1 , e ∈ E ( C + ) − 1 , e ∈ E ( C − ) 0 , e ∉ E ( C ) f_C(e)=\begin{cases}1, & e\in E(C^+) \\ -1, & e\in E(C^-) \\ 0, & e\notin E(C)\end{cases} fC(e)=1,1,0,eE(C+)eE(C)e/E(C)
  • 引理:任给有向图 D D D中的一个循环 f f f f f f都是一些圈导出循环的线性组合
  • 引理:任给有向图 D D D中的一个非负的循环 f f f f f f都是一些有向圈导出循环的线性组合。若 f f f的函数值都是整数,则 f f f是有向图导出循环的某个线性组合,使得该线性组合中的系数都是非负整数
    • 推论:设 N = ( D , s , t , c ) N=(D,s,t,c) N=(D,s,t,c)为一个网络,其容量函数 c c c为单位容量, k k k为正整数,则 N N N存在流量为 k k k得流函数等价于 k k k条从 s s s t t t k k k条无公共边得有向轨道。
  • 定理:任给有向图 D D D以及 D D D的两个顶点 u , v u,v u,v D D D中无公共边的 u v uv uv-有向轨道的最大数量等于最小 u v uv uv-边割集中有向边的数量。
  • 定理:任给无向图 G G G以及 G G G的两个顶点 u , v u,v u,v G G G中无公共边的 u v uv uv-轨道的最大数量等于最小 u v uv uv-边割集中边的数量。
  • 一些问题
    • 有向图
      • 无公共边的有向轨道问题
      • 最小边割集问题
      • 无公共内顶的有向轨道问题
    • 方法:构造辅助有向图 D ′ D' D
      • 给定有向图 D D D D D D的两个顶点 u , v ∈ V ( D ) u,v\in V(D) u,vV(D)
      • 除了 u , v u,v u,v之外,任给顶点 w ∈ V ( D ) − { u , v } w\in V(D)-\{u,v\} wV(D){u,v},将 w w w分成两个顶点 w − w^- w w + w^+ w+,且用一个有向边 ( w − , w + ) (w^-,w^+) (w,w+)来连接
      • 任给 D D D的一条有向边 e = ( x , y ) e=(x,y) e=(x,y),将 e e e的尾由 x x x换成 x + x^+ x+,将 e e e的头由 y y y换为 y − y^- y,除非 x , y x,y x,y u u u v v v,求 D D D的无公共内定的有向轨道变为求 D ′ D' D的无公共变得有向轨道,采用最大流算法即可。
    • 无向图
      • 无公共边的轨道问题
      • 最小边割集问题
      • 无公共内顶的轨道问题
    • 方法:构造顶点相同,无向边变双向边的有向图,转换为有向图的轨道问题,进而可以采用最大流的算法来解决
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值