概统考前瞄一眼(下)

概统复习

上接概统考前瞄一下(上),因字数过多,不得不拆分

理论依据
实际应用
理论分布
统计分析
概率论
数理统计
总体
样本

四、参数估计

数理统计学的基本概念

  • 总体:所研究对象某一指标的全体,称为总体
    • 研究对象中某个个体的指标称为个体
  • 样本:从研究对象中取若干个体的某项指标称之为样本,个体个数称为样本容量
  • X X X为总体, ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn)为一个样本,若满足
    • X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn相互独立
    • X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn与总体 X X X服从同样分布
    • ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn)简单随机样本,简称样本 ( x 1 , x 2 , ⋯   , x n ) (x_1,x_2,\cdots,x_n) (x1,x2,,xn)样本观察值
  • 统计量:设 X X X是总体, ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn)为来自总体 X X X的简单随机样本,则样本 ( X 1 , ⋯   , X n ) (X_1,\cdots,X_n) (X1,,Xn)无参函数称为统计量
  • 重要统计量
    • 样本均值: x ‾ = 1 n ∑ i = 1 n X i \overline{x}=\frac{1}{n}\sum_{i=1}^nX_i x=n1i=1nXi
    • 样本方差: s 2 = 1 n − 1 ∑ i = 1 n ( x i − x ‾ ) 2 s^2=\frac{1}{n-1}\sum_{i=1}^n(x_i-\overline{x})^2 s2=n11i=1n(xix)2
    • 样本的 k k k阶原点矩: A k = 1 n ∑ i = 1 n x i k A_k=\frac{1}{n}\sum_{i=1}^nx_i^k Ak=n1i=1nxik
    • 样本的 k k k阶中心矩: M k = 1 n ∑ i = 1 n ( x i − x ‾ ) k M_k=\frac{1}{n}\sum_{i=1}^n(x_i-\overline{x})^k Mk=n1i=1n(xix)k

三大抽样分布(☆)

K 2 K^2 K2分布
  • X ∼ N ( 0 , 1 ) — — 总 体 X\sim N(0,1)——总体 XN(0,1) ( X 1 , ⋯   , X n ) — — 样 本 (X_1,\cdots,X_n)——样本 (X1,,Xn)
    • Z = X 1 2 + X 2 2 + ⋯ + X n 2 Z=X_1^2+X_2^2+\cdots+X_n^2 Z=X12+X22++Xn2,称 Z Z Z服从自由度为 n n n K 2 K^2 K2分布,记== Z ∼ K 2 ( n ) Z\sim K^2(n) ZK2(n)==
  • 性质
    • X ∼ N ( 0 , 1 ) X\sim N(0,1) XN(0,1),则 X 2 ∼ K 2 ( 1 ) X^2\sim K^2(1) X2K2(1)
    • X ∼ K 2 ( n ) X\sim K^2(n) XK2(n),则 E X = n , D X = 2 n EX=n,DX=2n EX=n,DX=2n
    • X ∼ K 2 ( m ) , Y ∼ K 2 ( n ) , X , Y 独 立 X\sim K^2(m),Y\sim K^2(n),X,Y独立 XK2(m),YK2(n),X,Y,则 X + Y ∼ K 2 ( m + n ) X+Y\sim K^2(m+n) X+YK2(m+n)
    • K 1 − α 2 2 ( n ) K^2_{1-\frac{\alpha}{2}}(n) K12α2(n) K α 2 2 ( n ) K^2_{\frac{\alpha}{2}}(n) K2α2(n)
t t t分布
  • X ∼ N ( 0 , 1 ) , Y ∼ K 2 ( n ) X\sim N(0,1),Y\sim K^2(n) XN(0,1),YK2(n),且 X , Y X,Y X,Y独立
    • Z = X Y / n Z=\frac{X}{\sqrt{Y/n}} Z=Y/n X,称 Z Z Z服从自由度为 n n n t t t分布,记== Z ∼ t ( n ) Z\sim t(n) Zt(n)==
  • 性质
    • X ∼ t ( n ) X\sim t(n) Xt(n),则 E X = 0 EX=0 EX=0
    • X ∼ t ( n ) ⇒ X ∼ N ( 0 , 1 ) X\sim t(n)\Rightarrow X\sim N(0,1) Xt(n)XN(0,1),即 t 1 − α ( n ) = − t α ( n ) t_{1-\alpha}(n)=-t_\alpha(n) t1α(n)=tα(n)
F F F分布
  • X ∼ K 2 ( m ) , Y ∼ K 2 ( n ) , 且 X , Y 独 立 X\sim K^2(m),Y\sim K^2(n),且X,Y独立 XK2(m),YK2(n),X,Y
    • Z = X / m Y / n Z=\frac{X/m}{Y/n} Z=Y/nX/m,称 Z Z Z服从自由度为 m , n m,n m,n F F F分布,记== Z ∼ F ( m , n ) Z\sim F(m,n) ZF(m,n)==
  • 性质
    • X ∼ F ( m , n ) X\sim F(m,n) XF(m,n),则 1 X ∼ F ( n , m ) \frac{1}{X}\sim F(n,m) X1F(n,m)
    • F α ( m , n ) = 1 F 1 − α ( n , m ) F_\alpha(m,n)=\frac{1}{F_{1-\alpha}(n,m)} Fα(m,n)=F1α(n,m)1

正态总体抽样分布

  • X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2) X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn为总体 X X X的样本
    • x ‾ ∼ N ( μ , σ 2 n ) \overline{x}\sim N(\mu, \frac{\sigma^2}{n}) xN(μ,nσ2)

V a r ( X ) = σ 2 — — 总 体 方 差 Var(X)=\sigma^2——总体方差 Var(X)=σ2

s 2 = 1 n − 1 ∑ i = 1 n ( x i − x ‾ ) — — 样 本 方 差 s^2=\frac{1}{n-1}\sum_{i=1}^n(x_i-\overline{x})——样本方差 s2=n11i=1n(xix)

  • X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2) X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn为总体 X X X的样本
    • x ‾ − μ s 2 / n ∼ t ( n − 1 ) \frac{\overline{x}-\mu}{\sqrt{s^2/n}}\sim t(n-1) s2/n xμt(n1)

  • X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2) X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn为总体 X X X的样本
    • 1 σ 2 ∑ i = 1 n ( x i − μ ) 2 ∼ K 2 ( n ) \frac{1}{\sigma^2}\sum_{i=1}^n(x_i-\mu)^2\sim K^2(n) σ21i=1n(xiμ)2K2(n)

E ( X ) = μ — — 总 体 均 值 E(X)=\mu——总体均值 E(X)=μ

x ‾ = 1 n ∑ i = 1 n x i — — 样 本 均 值 \overline{x}=\frac{1}{n}\sum_{i=1}^nx_i——样本均值 x=n1i=1nxi

  • X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2) X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn为总体 X X X的样本
    • 1 σ 2 ∑ i = 1 n ( x i − x ‾ ) 2 ∼ K 2 ( n − 1 ) \frac{1}{\sigma^2}\sum_{i=1}^n(x_i-\overline{x})^2\sim K^2(n-1) σ21i=1n(xix)2K2(n1)

矩估计、极大似然估计

X X X总体分布已知,但含位置参数 θ \theta θ,对 θ \theta θ估计

  • 矩估计法
    • C a s e 1 : 含 θ Case1:含\theta Case1:θ
      • E X = f ( θ ) — — 总 体 的 一 阶 原 点 矩 EX=f(\theta)——总体的一阶原点矩 EX=f(θ)
      • x ‾ = 1 n ∑ i = 1 n x i — — 样 本 的 一 阶 原 点 矩 \overline{x}=\frac{1}{n}\sum_{i=1}^nx_i——样本的一阶原点矩 x=n1i=1nxi
      • E X = x ‾ ⇒ θ ^ = ϕ ( x 1 , ⋯   , x n ) — — θ 的 矩 估 计 量 EX=\overline{x}\Rightarrow \hat{\theta}=\phi(x_1,\cdots,x_n)——\theta的矩估计量 EX=xθ^=ϕ(x1,,xn)θ
    • C a s e 2 : 含 θ 1 , θ 2 Case2:含\theta_1,\theta_2 Case2:θ1,θ2
      • E X = f ( θ 1 , θ 2 ) , E X 2 = f ( θ 1 , θ 2 ) EX=f(\theta_1,\theta_2),EX^2=f(\theta_1,\theta_2) EX=f(θ1,θ2)EX2=f(θ1,θ2)
      • E X = x ‾ , E X 2 = 1 n ∑ i = 1 n x i 2 EX=\overline{x},EX^2=\frac{1}{n}\sum_{i=1}^nx_i^2 EX=xEX2=n1i=1nxi2
      • 求解 θ 1 , θ 2 \theta_1,\theta_2 θ1,θ2
  • 极大似然估计
    • C a s e 1 : 总 体 X 为 离 散 型 ( 含 θ ) Case1:总体X为离散型(含\theta) Case1:X(θ)
      • L ( θ ) = P { X = x 1 } P { X = x 2 } ⋯ P { X = x n } L(\theta)=P\{X=x_1\}P\{X=x_2\}\cdots P\{X=x_n\} L(θ)=P{X=x1}P{X=x2}P{X=xn}
      • L n L ( θ ) = ⋯ LnL(\theta)=\cdots LnL(θ)=
      • d d θ L n L ( θ ) = ⋯ = 0 ⇒ θ ^ = ϕ ( x 1 , ⋯   , x n ) \frac{d}{d\theta}LnL(\theta)=\cdots=0\Rightarrow \hat{\theta}=\phi(x_1,\cdots,x_n) dθdLnL(θ)==0θ^=ϕ(x1,,xn)
    • C a s e 2 : 总 体 X ∼ f ( x , θ ) Case2:总体X\sim f(x,\theta) Case2:Xf(x,θ)
      • L ( θ ) = f ( x 1 , θ ) f ( x 2 , θ ) ⋯ f ( x n , θ ) L(\theta)=f(x_1,\theta)f(x_2,\theta)\cdots f(x_n,\theta) L(θ)=f(x1,θ)f(x2,θ)f(xn,θ)
      • L n L ( θ ) = ⋯ LnL(\theta)=\cdots LnL(θ)=
      • d d θ L n L ( θ ) = ⋯ = 0 ⇒ θ ^ = ϕ ( x 1 , ⋯   , x n ) \frac{d}{d\theta}LnL(\theta)=\cdots=0\Rightarrow \hat{\theta}=\phi(x_1,\cdots,x_n) dθdLnL(θ)==0θ^=ϕ(x1,,xn)

点估计的优良性准则

E ( X ‾ ) = E ( X ) , D ( X ‾ ) = D ( X ) n E(\overline{X})=E(X),D(\overline{X})=\frac{D(X)}{n} E(X)=E(X),D(X)=nD(X)

无偏性

  • X X X为总体, ( X 1 , ⋯   , X n ) (X_1,\cdots,X_n) (X1,,Xn)为来自总体 X X X的样本, θ ^ = ϕ ( X 1 , X 2 , ⋯   , X n ) \hat{\theta}=\phi(X_1,X_2,\cdots,X_n) θ^=ϕ(X1,X2,,Xn) θ \theta θ的估计量
    • I f   E θ ^ = θ If\ E\hat{\theta}=\theta If Eθ^=θ,称 θ ^ = ϕ ( X 1 , ⋯ X n ) \hat{\theta}=\phi(X_1,\cdots X_n) θ^=ϕ(X1,Xn) θ \theta θ无偏估计量

有效性

  • X X X为总体, ( X 1 , ⋯   , X n ) (X_1,\cdots,X_n) (X1,,Xn) X X X的样本, θ 1 ^ , θ 2 ^ \hat{\theta_1},\hat{\theta_2} θ1^,θ2^都为 θ \theta θ的无偏估计量
    • D θ 1 ^ < D θ 2 ^ D\hat{\theta_1}<D\hat{\theta_2} Dθ1^<Dθ2^,称 θ 1 ^ \hat{\theta_1} θ1^ θ \theta θ更有效的无偏估计量

小例

  • ( X 1 , ⋯   , X n ) (X_1,\cdots,X_n) (X1,,Xn) X X X的样本, X ∼ U ( 0 , θ ) X\sim U(0,\theta) XU(0,θ),求 θ \theta θ的矩估计量和极大似然估计量,判断无偏性,并比较修正后的有效性
    • 求点估计量
      • { 1 θ , 0 < x < θ 0 , 其 他 \begin{cases}\frac{1}{\theta}, &0<x<\theta \\ 0, &其他\end{cases} {θ1,0,0<x<θ E X = θ 2 EX=\frac{\theta}{2} EX=2θ,令 E X = X ‾ EX=\overline{X} EX=X,则 θ \theta θ的矩估计量为 θ 1 ^ = 2 X ‾ \hat{\theta_1}=2\overline{X} θ1^=2X
      • L ( θ ) = 1 θ n , L n L ( θ ) = − n l n θ L(\theta)=\frac{1}{\theta^n},LnL(\theta)=-nln\theta L(θ)=θn1,LnL(θ)=nlnθ d d θ = − n θ < 0 \frac{d}{d\theta}=-\frac{n}{\theta}<0 dθd=θn<0,单调递减, θ 2 ^ = max ⁡ { X 1 , ⋯   , X n } \hat{\theta_2}=\max\{X_1,\cdots,X_n\} θ2^=max{X1,,Xn}
    • 判断无偏性
      • E ( θ 1 ^ ) = 2 E ( X ‾ ) = 2 E X = θ E(\hat{\theta_1})=2E(\overline{X})=2EX=\theta E(θ1^)=2E(X)=2EX=θ
      • F θ 2 ^ ( x ) = P { θ 2 ^ ≤ x } = P { X 1 ≤ x } ⋯ P { X n ≤ x } = P n { X ≤ x } = F n ( x ) F_{\hat{\theta_2}}(x)=P\{\hat{\theta_2}\leq x\}=P\{X_1\leq x\}\cdots P\{X_n\leq x\}=P^n\{X\leq x\}=F^n(x) Fθ2^(x)=P{θ2^x}=P{X1x}P{Xnx}=Pn{Xx}=Fn(x)
      • F ( x ) = { 0 , x < 0 x θ , 0 ≤ x < θ 1 , x ≥ θ F(x)=\begin{cases}0,&x<0 \\ \frac{x}{\theta},&0\leq x <\theta \\ 1, &x\geq \theta\end{cases} F(x)=0,θx,1,x<00x<θxθ f θ 2 ^ ( x ) = n F ( n − 1 ) ( x ) f ( x ) = { n x n − 1 θ n , 0 < x < θ 0 , 其 他 f_{\hat{\theta_2}}(x)=nF^{(n-1)}(x)f(x)=\begin{cases}\frac{nx^{n-1}}{\theta^n},&0<x<\theta \\ 0,&其他\end{cases} fθ2^(x)=nF(n1)(x)f(x)={θnnxn1,0,0<x<θ
      • E ( θ 2 ^ ) = ∫ 0 θ x n x n − 1 θ n d x = n n + 1 θ ≠ θ E(\hat{\theta_2})=\int_0^\theta x\frac{nx^{n-1}}{\theta^n}dx=\frac{n}{n+1}\theta\neq\theta E(θ2^)=0θxθnnxn1dx=n+1nθ=θ
      • 修正 θ 2 ^ = n + 1 n max ⁡ { X 1 , ⋯   , X n } \hat{\theta_2}=\frac{n+1}{n}\max\{X_1,\cdots,X_n\} θ2^=nn+1max{X1,,Xn}
    • 比较有效性
      • D ( θ 1 ^ ) = D ( 2 X ‾ ) = 4 D ( X ‾ ) = 4 n D X = 4 n θ 2 12 = θ 2 3 n D(\hat{\theta_1})=D(2\overline{X})=4D(\overline{X})=\frac{4}{n}DX=\frac{4}{n}\frac{\theta^2}{12}=\frac{\theta^2}{3n} D(θ1^)=D(2X)=4D(X)=n4DX=n412θ2=3nθ2
      • Y = max ⁡ { X 1 , ⋯   , X n } Y=\max\{X_1,\cdots,X_n\} Y=max{X1,,Xn} f Y ( x ) 在 上 一 问 已 求 解 f_Y(x)在上一问已求解 fY(x) E Y = n n + 1 θ EY=\frac{n}{n+1}\theta EY=n+1nθ
      • D ( θ 2 ^ ) = E ( θ 2 2 ^ ) − E ( θ 2 ^ ) 2 D(\hat{\theta_2})=E(\hat{\theta_2^2})-E(\hat{\theta_2})^2 D(θ2^)=E(θ22^)E(θ2^)2 E ( θ 2 ^ ) = E ( n + 1 n Y ) = θ E(\hat{\theta_2})=E(\frac{n+1}{n}Y)=\theta E(θ2^)=E(nn+1Y)=θ E ( θ 2 2 ^ ) = ∫ 0 θ ( n + 1 n x ) 2 n x n − 1 θ n d x = ( n + 1 ) 2 n ( n + 2 ) θ 2 E(\hat{\theta_2^2})=\int_0^\theta(\frac{n+1}{n}x)^2\frac{nx^{n-1}}{\theta^n}dx=\frac{(n+1)^2}{n(n+2)}\theta^2 E(θ22^)=0θ(nn+1x)2θnnxn1dx=n(n+2)(n+1)2θ2
      • D ( θ 2 ^ ) = 1 n ( n + 2 ) θ 2 D(\hat{\theta_2})=\frac{1}{n(n+2)}\theta^2 D(θ2^)=n(n+2)1θ2
      • n ≥ 2 n\geq 2 n2时, D ( θ 2 ^ ) < D ( θ 1 ^ ) D(\hat{\theta_2})<D(\hat{\theta_1}) D(θ2^)<D(θ1^) θ 2 ^ \hat{\theta_2} θ2^ θ 1 ^ \hat{\theta_1} θ1^更有效

区间估计

  • X X X为总体, X X X分布已知,但含未知参数 θ \theta θ X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn为样本,若 θ ‾ = ϕ 1 ( X 1 , ⋯   , X n ) , θ ‾ = ϕ 2 ( X 1 , ⋯   , X n ) \underline{\theta}=\phi_1(X_1,\cdots,X_n),\overline{\theta}=\phi_2(X_1,\cdots,X_n) θ=ϕ1(X1,,Xn),θ=ϕ2(X1,,Xn)
    • 使 P { θ ‾ < θ < θ ‾ } = 1 − α P\{\underline{\theta}<\theta<\overline{\theta}\}=1-\alpha P{θ<θ<θ}=1α,称 ( θ ‾ , θ ‾ ) (\underline{\theta},\overline{\theta}) (θ,θ)为置信度为 1 − α 1-\alpha 1α置信区间 θ ‾ , θ ‾ \underline{\theta},\overline{\theta} θ,θ置信下限置信上限
正态总体未知参数置信区间
  • μ \mu μ进行区间估计
    • σ \sigma σ已知
      • X ‾ − μ σ n ∼ N ( 0 , 1 ) \frac{\overline{X}-\mu}{\frac{\sigma}{\sqrt{n}}}\sim N(0,1) n σXμN(0,1)
      • ± u α 2 \pm u_{\frac{\alpha}{2}} ±u2α
      • P { − u α 2 < X ‾ − μ σ n < u α 2 } = 1 − α P\{-u_{\frac{\alpha}{2}}<\frac{\overline{X}-\mu}{\frac{\sigma}{\sqrt{n}}}<u_{\frac{\alpha}{2}}\}=1-\alpha P{u2α<n σXμ<u2α}=1α
      • 解得 μ \mu μ的置信区间为== ( X ‾ − σ n u α 2 , X ‾ + σ n u α 2 ) (\overline{X}-\frac{\sigma}{\sqrt{n}}u_{\frac{\alpha}{2}},\overline{X}+\frac{\sigma}{\sqrt{n}}u_{\frac{\alpha}{2}}) (Xn σu2α,X+n σu2α)==
      • 单侧同理, α 2 \frac{\alpha}{2} 2α变为 α \alpha α另一侧为 ∞ \infty
    • σ \sigma σ未知
      • X ‾ − μ s n ∼ t ( n − 1 ) \frac{\overline{X}-\mu}{\frac{s}{\sqrt{n}}}\sim t(n-1) n sXμt(n1)
      • t α 2 ( n − 1 ) t_{\frac{\alpha}{2}}(n-1) t2α(n1)
      • P { − t α 2 ( n − 1 ) < X ‾ − μ s n < t α 2 ( n − 1 ) } = 1 − α P\{-t_{\frac{\alpha}{2}}(n-1)<\frac{\overline{X}-\mu}{\frac{s}{\sqrt{n}}}<t_{\frac{\alpha}{2}}(n-1)\}=1-\alpha P{t2α(n1)<n sXμ<t2α(n1)}=1α
      • 解得 μ \mu μ的置信度为 1 − α 1-\alpha 1α的置信区间为== ( X ‾ − s n t α 2 ( n − 1 ) , X ‾ + s n t α 2 ( n − 1 ) ) (\overline{X}-\frac{s}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1),\overline{X}+\frac{s}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1)) (Xn st2α(n1),X+n st2α(n1))==
      • 单侧同理, α 2 \frac{\alpha}{2} 2α变为 α \alpha α另一侧为 ∞ \infty
  • σ 2 \sigma^2 σ2进行区间估计
    • μ \mu μ已知
      • 1 σ 2 ∑ i = 1 n ( X i − μ ) 2 ∼ K 2 ( n ) \frac{1}{\sigma^2}\sum_{i=1}^n(X_i-\mu)^2\sim K^2(n) σ21i=1n(Xiμ)2K2(n)
      • K 1 − α 2 2 ( n ) , K α 2 2 ( n ) K^2_{1-\frac{\alpha}{2}}(n),K^2_{\frac{\alpha}{2}}(n) K12α2(n),K2α2(n)
      • P { K 1 − α 2 2 ( n ) < 1 σ 2 ∑ i = 1 n ( X i − μ ) 2 < K α 2 2 ( n ) } = 1 − α P\{K^2_{1-\frac{\alpha}{2}}(n)<\frac{1}{\sigma^2}\sum_{i=1}^n(X_i-\mu)^2<K^2_{\frac{\alpha}{2}}(n)\}=1-\alpha P{K12α2(n)<σ21i=1n(Xiμ)2<K2α2(n)}=1α
      • 解得 σ 2 \sigma^2 σ2置信度为 1 − α 1-\alpha 1α的置信区间为== ( ∑ i = 1 n ( X i − μ ) 2 K α 2 2 ( n ) , ∑ i = 1 n ( X i − μ ) 2 K 1 − α 2 2 ( n ) ) (\frac{\sum_{i=1}^n(X_i-\mu)^2}{K^2_{\frac{\alpha}{2}}(n)},\frac{\sum_{i=1}^n(X_i-\mu)^2}{K^2_{1-\frac{\alpha}{2}}(n)}) (K2α2(n)i=1n(Xiμ)2,K12α2(n)i=1n(Xiμ)2)==
      • 单侧同理, α 2 \frac{\alpha}{2} 2α变为 α \alpha α另一侧为 ∞ \infty
    • μ \mu μ未知
      • ( n − 1 ) s 2 σ 2 ∼ K 2 ( n − 1 ) \frac{(n-1)s^2}{\sigma^2}\sim K^2(n-1) σ2(n1)s2K2(n1)
      • K 1 − α 2 2 ( n − 1 ) , K α 2 2 ( n − 1 ) K^2_{1-\frac{\alpha}{2}}(n-1),K^2_{\frac{\alpha}{2}}(n-1) K12α2(n1),K2α2(n1)
      • P { K 1 − α 2 2 ( n − 1 ) < ( n − 1 ) s 2 σ 2 < K α 2 2 ( n − 1 ) } = 1 − α P\{K^2_{1-\frac{\alpha}{2}}(n-1)<\frac{(n-1)s^2}{\sigma^2}<K^2_{\frac{\alpha}{2}}(n-1)\}=1-\alpha P{K12α2(n1)<σ2(n1)s2<K2α2(n1)}=1α
      • 解得 σ 2 \sigma^2 σ2置信度为 1 − α 1-\alpha 1α的置信区间为== ( ( n − 1 ) s 2 K α 2 2 ( n − 1 ) , ( ( n − 1 ) s 2 K 1 − α 2 2 ( n − 1 ) ) (\frac{(n-1)s^2}{K^2_{\frac{\alpha}{2}}(n-1)},(\frac{(n-1)s^2}{K^2_{1-\frac{\alpha}{2}}(n-1)}) (K2α2(n1)(n1)s2,(K12α2(n1)(n1)s2)==
      • 单侧同理, α 2 \frac{\alpha}{2} 2α变为 α \alpha α另一侧为 ∞ \infty
指数总体未知参数置信区间
  • 2 n λ X ‾ ∼ K 2 n 2 2n\lambda\overline{X}\sim K_{2n}^2 2nλXK2n2
  • K 1 − α 2 2 ( 2 n ) , K α 2 2 ( 2 n ) K^2_{1-\frac{\alpha}{2}}(2n),K^2_{\frac{\alpha}{2}}(2n) K12α2(2n),K2α2(2n)
  • P { K 1 − α 2 2 ( 2 n ) < 2 n λ X ‾ < K α 2 2 ( 2 n ) } = 1 − α P\{K^2_{1-\frac{\alpha}{2}}(2n)<2n\lambda\overline{X}<K^2_{\frac{\alpha}{2}}(2n)\}=1-\alpha P{K12α2(2n)<2nλX<K2α2(2n)}=1α
  • 解得 λ \lambda λ置信度为 1 − α 1-\alpha 1α的置信区间为 ( 2 n X ‾ K α 2 2 ( 2 n ) , 2 n X ‾ K 1 − α 2 2 ( 2 n ) ) (\frac{2n\overline{X}}{K_{\frac{\alpha}{2}}^2(2n)},\frac{2n\overline{X}}{K_{1-\frac{\alpha}{2}}^2(2n)}) (K2α2(2n)2nX,K12α2(2n)2nX)
  • 单侧同理, α 2 \frac{\alpha}{2} 2α变为 α \alpha α另一侧为 ∞ \infty

注:对于泊松分布可采用大样本法,提示 Y n = X 1 + ⋯ + X n , Y n − n λ n λ ∼ N ( 0 , 1 ) Y_n=X_1+\cdots+X_n,\frac{Y_n-n\lambda}{\sqrt{n\lambda}}\sim N(0,1) Yn=X1++Xn,nλ YnnλN(0,1)


五、假设检验

统计者想要拒绝的假设,应放置于原假设

问题提法和基本概念

  • 假设检验:设总体 X X X的分布已知,但含未知参数,从总体中取出简单随机样本,对总体总的某个未知参数提出假设,利用样本构造统计量,对所作出的假设的真伪进行判断,在统计学上称为假设检验
  • 假设检验的两类错误
    • 弃真错误:原假设 H 0 H_0 H0为真,但根据样本检验结果 H 0 H_0 H0被拒绝
      • P { X i ∈ W ∣ H 0 } = 1 − P { X i ∉ W ∣ H 0 } P\{X_i\in W|H_0\}=1-P\{X_i\notin W|H_0\} P{XiWH0}=1P{Xi/WH0}
    • 存伪错误:原假设 H 0 H_0 H0不真,但根据样本检验结果 H 0 H_0 H0被接受
      • P { X i ∉ W ∣ H 1 } = 1 − P { X i ∈ W ∣ H 1 } P\{X_i\notin W|H_1\}=1-P\{X_i\in W|H_1\} P{Xi/WH1}=1P{XiWH1}
  • 假设检验的步骤
    • 提出原假设 H 0 H_0 H0及备选假设 H 1 H_1 H1
    • 根据已知条件选择何时的统计量
    • 根据显著性水平 α \alpha α,确定假设 H 0 H_0 H0的拒绝域
    • 将样本观察值带入统计量,若统计量的值属于拒绝域,则拒绝 H 0 H_0 H0;若统计量的值位于接受域,则接受 H 0 H_0 H0
  • 功效函数:设总体分布包含若干个未知参数 θ 1 , ⋯   , θ k \theta_1,\cdots,\theta_k θ1,,θk H 0 H_0 H0是关于这些参数的原假设,设有样本 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn,而 Φ \Phi Φ是基于这些样本对 H 0 H_0 H0的一个检验,则称检验 Φ \Phi Φ的功效函数为 β Φ ( θ 1 , ⋯   , θ k ) = P θ 1 , ⋯   , θ k ( 原 假 设 否 定 的 概 率 ) \beta_\Phi(\theta_1,\cdots,\theta_k)=P_{\theta_1,\cdots,\theta_k}(原假设否定的概率) βΦ(θ1,,θk)=Pθ1,,θk()

重要参数检验

一个正态总体的假设检验

X ‾ = 1 n ∑ i = 1 n X i , S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 \overline{X}=\frac{1}{n}\sum_{i=1}^nX_i,S^2=\frac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})^2 X=n1i=1nXi,S2=n11i=1n(XiX)2

  • 均值 μ \mu μ的假设检验
    • σ 2 \sigma^2 σ2已知 U U U检验
      • 双侧检验:令: H 0 : μ = μ 0 , H 1 : μ ≠ μ 0 H_0:\mu=\mu_0,H_1:\mu\neq\mu_0 H0:μ=μ0,H1:μ=μ0
        • Z = X ‾ − μ 0 σ n ∼ N ( 0 , 1 ) Z=\frac{\overline{X}-\mu_0}{\frac{\sigma}{\sqrt{n}}}\sim N(0,1) Z=n σXμ0N(0,1)
        • 查表求 ± u α 2 \pm u_{\frac{\alpha}{2}} ±u2α,则 H 0 H_0 H0的接受域为 ( − u α 2 , u α 2 ) (-u_{\frac{\alpha}{2}},u_{\frac{\alpha}{2}}) (u2α,u2α)
        • 样本观察值带入得 Z 0 = x ‾ − μ 0 σ n Z_0=\frac{\overline{x}-\mu_0}{\frac{\sigma}{\sqrt{n}}} Z0=n σxμ0,若 Z 0 Z_0 Z0在接受域内,则接受 H 0 H_0 H0,否则拒绝 H 0 H_0 H0
      • 右侧检验:令: H 0 : μ ≤ μ 0 , H 1 : μ > μ 0 H_0:\mu\leq\mu_0,H_1:\mu>\mu_0 H0:μμ0,H1:μ>μ0
        • Z = X ‾ − μ 0 σ n ∼ N ( 0 , 1 ) Z=\frac{\overline{X}-\mu_0}{\frac{\sigma}{\sqrt{n}}}\sim N(0,1) Z=n σXμ0N(0,1)
        • 查表求 u α u_{\alpha} uα,则 H 0 H_0 H0的接受域为 ( − ∞ , u α ) (-\infty, u_\alpha) (,uα)
        • 样本观察值带入得 Z 0 = x ‾ − μ 0 σ n Z_0=\frac{\overline{x}-\mu_0}{\frac{\sigma}{\sqrt{n}}} Z0=n σxμ0,若 Z 0 Z_0 Z0在接受域内,则接受 H 0 H_0 H0,否则拒绝 H 0 H_0 H0
      • 左侧检验:令: H 0 : μ ≥ μ 0 , H 1 : μ > μ 0 H_0:\mu\geq\mu_0,H_1:\mu>\mu_0 H0:μμ0,H1:μ>μ0
        • Z = X ‾ − μ 0 σ n ∼ N ( 0 , 1 ) Z=\frac{\overline{X}-\mu_0}{\frac{\sigma}{\sqrt{n}}}\sim N(0,1) Z=n σXμ0N(0,1)
        • 查表求 u α u_{\alpha} uα,则 H 0 H_0 H0的接受域为 ( u α , + ∞ ) (u_\alpha,+\infty) (uα+)
        • 样本观察值带入得 Z 0 = x ‾ − μ 0 σ n Z_0=\frac{\overline{x}-\mu_0}{\frac{\sigma}{\sqrt{n}}} Z0=n σxμ0,若 Z 0 Z_0 Z0在接受域内,则接受 H 0 H_0 H0,否则拒绝 H 0 H_0 H0
    • σ 2 \sigma^2 σ2未知 t t t检验
      • 双侧检验:令: H 0 : μ = μ 0 , H 1 : μ ≠ μ 0 H_0:\mu=\mu_0,H_1:\mu\neq\mu_0 H0:μ=μ0,H1:μ=μ0
        • t = X ‾ − μ 0 S n ∼ t ( n − 1 ) t=\frac{\overline{X}-\mu_0}{\frac{S}{\sqrt{n}}}\sim t(n-1) t=n SXμ0t(n1)
        • 查表求上下分位点 ± t α 2 ( n − 1 ) \pm t_{\frac{\alpha}{2}}(n-1) ±t2α(n1),则 H 0 H_0 H0的接受域为 ( − t α 2 ( n − 1 ) , t α 2 ( n − 1 ) ) (-t_{\frac{\alpha}{2}}(n-1),t_{\frac{\alpha}{2}}(n-1)) (t2α(n1),t2α(n1))
        • 样本观察值带入得 t 0 = x ‾ − μ s n t_0=\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}} t0=n sxμ,若 t 0 t_0 t0在接受域内,则接受 H 0 H_0 H0,否则拒绝 H 0 H_0 H0
      • 右侧检验:令: H 0 : μ ≤ μ 0 , H 1 : μ > μ 0 H_0:\mu\leq\mu_0,H_1:\mu>\mu_0 H0:μμ0,H1:μ>μ0
        • t = X ‾ − μ 0 S n ∼ t ( n − 1 ) t=\frac{\overline{X}-\mu_0}{\frac{S}{\sqrt{n}}}\sim t(n-1) t=n SXμ0t(n1)
        • 查表求 t α ( n − 1 ) t_{\alpha}(n-1) tα(n1),则 H 0 H_0 H0的接受域为 ( − ∞ , t α ( n − 1 ) ) (-\infty, t_{\alpha}(n-1)) (,tα(n1))
        • 样本观察值带入得 Z 0 = x ‾ − μ 0 σ n Z_0=\frac{\overline{x}-\mu_0}{\frac{\sigma}{\sqrt{n}}} Z0=n σxμ0,若 Z 0 Z_0 Z0在接受域内,则接受 H 0 H_0 H0,否则拒绝 H 0 H_0 H0
      • 左侧检验:令: H 0 : μ ≥ μ 0 , H 1 : μ > μ 0 H_0:\mu\geq\mu_0,H_1:\mu>\mu_0 H0:μμ0,H1:μ>μ0
        • t = X ‾ − μ 0 S n ∼ t ( n − 1 ) t=\frac{\overline{X}-\mu_0}{\frac{S}{\sqrt{n}}}\sim t(n-1) t=n SXμ0t(n1)
        • 查表求 − t α ( n − 1 ) -t_{\alpha}(n-1) tα(n1),则 H 0 H_0 H0的接受域为 ( − t α ( n − 1 ) , + ∞ ) (-t_{{\alpha}}(n-1),+\infty) (tα(n1)+)
        • 样本观察值带入得 Z 0 = x ‾ − μ 0 σ n Z_0=\frac{\overline{x}-\mu_0}{\frac{\sigma}{\sqrt{n}}} Z0=n σxμ0,若 Z 0 Z_0 Z0在接受域内,则接受 H 0 H_0 H0,否则拒绝 H 0 H_0 H0
  • 方差 σ 2 \sigma^2 σ2的假设检验
    • μ \mu μ已知 K 2 K^2 K2检验
      • 双侧检验: H 0 : σ 2 = σ 0 2 , H 1 : σ 2 ≠ σ 0 2 H_0:\sigma^2=\sigma_0^2,H_1:\sigma^2\neq\sigma_0^2 H0:σ2=σ02,H1:σ2=σ02
        • 1 σ 2 ∑ i = 1 n ( X i − μ ) 2 ∼ K 2 ( n ) \frac{1}{\sigma^2}\sum_{i=1}^n(X_i-\mu)^2\sim K^2(n) σ21i=1n(Xiμ)2K2(n)
        • 查表求 K 1 − α 2 2 ( n ) , K α 2 2 ( n ) K_{1-\frac{\alpha}{2}}^2(n),K^2_{\frac{\alpha}{2}}(n) K12α2(n),K2α2(n),则 H 0 H_0 H0的接受域为 ( K 1 − α 2 2 ( n ) , K α 2 2 ( n ) ) (K_{1-\frac{\alpha}{2}}^2(n),K^2_{\frac{\alpha}{2}}(n)) (K12α2(n),K2α2(n))
        • 样本观察值带入得 1 σ 0 2 ∑ i = 1 n ( x i − μ ) 2 \frac{1}{\sigma_0^2}\sum_{i=1}^n(x_i-\mu)^2 σ021i=1n(xiμ)2,若在接受域内,则接受 H 0 H_0 H0,否则拒绝 H 0 H_0 H0
      • 右侧检验/左侧检验同理
    • μ \mu μ未知 K 2 K^2 K2检验
      • 双侧检验: H 0 : σ 2 = σ 0 2 , H 1 : σ 2 ≠ σ 0 2 H_0:\sigma^2=\sigma_0^2,H_1:\sigma^2\neq\sigma_0^2 H0:σ2=σ02,H1:σ2=σ02
        • ( n − 1 ) S 2 σ 2 ∼ K 2 ( n − 1 ) \frac{(n-1)S^2}{\sigma^2}\sim K^2(n-1) σ2(n1)S2K2(n1)
        • 查表求 K 1 − α 2 2 ( n − 1 ) , K α 2 2 ( n − 1 ) K_{1-\frac{\alpha}{2}}^2(n-1),K^2_{\frac{\alpha}{2}}(n-1) K12α2(n1),K2α2(n1),则 H 0 H_0 H0的接受域为 ( K 1 − α 2 2 ( n − 1 ) , K α 2 2 ( n − 1 ) ) (K_{1-\frac{\alpha}{2}}^2(n-1),K^2_{\frac{\alpha}{2}}(n-1)) (K12α2(n1),K2α2(n1))
        • 样本观察值带入得 ( n − 1 ) S 2 σ 0 2 \frac{(n-1)S^2}{\sigma_0^2} σ02(n1)S2,若在接受域内,则接受 H 0 H_0 H0,否则拒绝 H 0 H_0 H0
      • 右侧检验/左侧检验同理

两个正态总体的假设检验

  • μ 1 − μ 2 \mu_1-\mu_2 μ1μ2的假设检验
    • σ 1 , σ 2 \sigma_1,\sigma_2 σ1,σ2已知
      • 双侧检验:令 H 0 : μ 1 = μ 2 , H 1 : μ 1 ≠ μ 2 H_0:\mu_1=\mu_2,H_1:\mu_1\neq\mu_2 H0:μ1=μ2,H1:μ1=μ2
        • X ‾ − Y ‾ − ( μ 1 − μ 2 ) σ 1 2 m + σ 2 2 n ∼ N ( 0 , 1 ) \frac{\overline{X}-\overline{Y}-(\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{m}+\frac{\sigma_2^2}{n}}}\sim N(0,1) mσ12+nσ22 XY(μ1μ2)N(0,1)
        • 查表求 ± u α 2 \pm u_{\frac{\alpha}{2}} ±u2α,则 H 0 H_0 H0的接受域为 ( − u α 2 , u α 2 ) (-u_{\frac{\alpha}{2}},u_{\frac{\alpha}{2}}) (u2α,u2α)
        • 样本观察值带入得 Z 0 = x ‾ − y ‾ − ( μ 1 − μ 2 ) σ 1 2 m + σ 2 2 n Z_0=\frac{\overline{x}-\overline{y}-(\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{m}+\frac{\sigma_2^2}{n}}} Z0=mσ12+nσ22 xy(μ1μ2),若 Z 0 Z_0 Z0在接受域内,则接受 H 0 H_0 H0,否则拒绝 H 0 H_0 H0
      • 右侧检验/左侧检验同理
    • σ 1 = σ 2 = σ \sigma_1=\sigma_2=\sigma σ1=σ2=σ未知
      • 双侧检验:令 H 0 : μ 1 = μ 2 , H 1 : μ 1 ≠ μ 2 H_0:\mu_1=\mu_2,H_1:\mu_1\neq\mu_2 H0:μ1=μ2,H1:μ1=μ2
        • X ‾ − Y ‾ − ( μ 1 − μ 2 ) S w 1 m + 1 n ∼ t ( m + n − 2 ) \frac{\overline{X}-\overline{Y}-(\mu_1-\mu_2)}{S_w\sqrt{\frac{1}{m}+\frac{1}{n}}}\sim t(m+n-2) Swm1+n1 XY(μ1μ2)t(m+n2)
        • S w = ( n 1 − 1 ) s 1 2 + ( n 2 − 1 ) s 2 2 n 1 + n 2 − 2 S_w=\frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2} Sw=n1+n22(n11)s12+(n21)s22
        • 查表求上下分位点 ± t α 2 ( m + n − 2 ) \pm t_{\frac{\alpha}{2}}(m+n-2) ±t2α(m+n2),则 H 0 H_0 H0的接受域为 ( − t α 2 ( m + n − 2 ) , t α 2 ( m + n − 2 ) ) (-t_{\frac{\alpha}{2}}(m+n-2),t_{\frac{\alpha}{2}}(m+n-2)) (t2α(m+n2),t2α(m+n2))
        • 样本观察值带入得 Z 0 = x ‾ − y ‾ − ( μ 1 − μ 2 ) S w 1 m + 1 n Z_0=\frac{\overline{x}-\overline{y}-(\mu_1-\mu_2)}{S_w\sqrt{\frac{1}{m}+\frac{1}{n}}} Z0=Swm1+n1 xy(μ1μ2),若 Z 0 Z_0 Z0在接受域内,则接受 H 0 H_0 H0,否则拒绝 H 0 H_0 H0
      • 右侧检验/左侧检验同理
  • μ 1 , μ 2 \mu_1,\mu_2 μ1,μ2未知下方差的检验
    • 双侧检验:设 H 0 : σ 1 2 = σ 2 2 , H 1 : σ 1 2 ≠ σ 2 2 H_0:\sigma_1^2=\sigma_2^2,H_1:\sigma_1^2\neq\sigma_2^2 H0:σ12=σ22,H1:σ12=σ22
      • F = S 1 2 S 2 2 ∼ F ( m − 1 , n − 1 ) F=\frac{S_1^2}{S_2^2}\sim F(m-1, n-1) F=S22S12F(m1,n1)
      • 查表求 F 1 − α 2 ( m − 1 , n − 1 ) , F α 2 ( m − 1 , n − 1 ) F_{1-\frac{\alpha}{2}}(m-1,n-1),F_{\frac{\alpha}{2}}(m-1,n-1) F12α(m1,n1),F2α(m1,n1),则 H 0 H_0 H0的接受域为 ( F 1 − α 2 ( m − 1 , n − 1 ) , F α 2 ( m − 1 , n − 1 ) ) (F_{1-\frac{\alpha}{2}}(m-1,n-1),F_{\frac{\alpha}{2}}(m-1,n-1)) (F12α(m1,n1),F2α(m1,n1))
      • 样本观察值带入得 F 0 = s 1 2 s 2 2 F_0=\frac{s_1^2}{s_2^2} F0=s22s12,若 F 0 F_0 F0在接受域内,则接受 H 0 H_0 H0,否则拒绝 H 0 H_0 H0
    • 右侧检验/左侧检验同理

指数分布参数 λ \lambda λ的检验

  • 双侧检验:设 H 0 : λ = λ 0 , H 1 : λ ≠ λ 0 H_0:\lambda=\lambda_0,H_1:\lambda\neq\lambda_0 H0:λ=λ0,H1:λ=λ0
    • 2 n λ 0 X ‾ ∼ K 2 ( 2 n ) 2n\lambda_0\overline{X}\sim K^2(2n) 2nλ0XK2(2n)
    • 查表求 K 1 − α 2 2 ( n ) , K α 2 2 ( n ) K^2_{1-\frac{\alpha}{2}}(n),K^2_{\frac{\alpha}{2}}(n) K12α2(n),K2α2(n),则 H 0 H_0 H0的接受域为 ( K 1 − α 2 2 ( n ) , K α 2 2 ( n ) ) (K^2_{1-\frac{\alpha}{2}}(n),K^2_{\frac{\alpha}{2}}(n)) (K12α2(n),K2α2(n))
    • 样本观察值带入得 Z 0 = 2 n λ 0 x ‾ Z_0=2n\lambda_0\overline{x} Z0=2nλ0x,若 Z 0 Z_0 Z0在接受域内,则接受 H 0 H_0 H0,否则拒绝 H 0 H_0 H0
  • 右侧/左侧检验同理

二项分布参数 p p p的检验

  • ∑ i = 0 c 0 ( i n ) p 0 i ( 1 − p 0 ) n − i < 1 − α < ∑ i = 0 c 0 + 1 ( i n ) p 0 i ( 1 − p 0 ) n − i \sum_{i=0}^{c_0}(^n_i)p_0^i(1-p_0)^{n-i}<1-\alpha<\sum_{i=0}^{c_0+1}(^n_i)p_0^i(1-p_0)^{n-i} i=0c0(in)p0i(1p0)ni<1α<i=0c0+1(in)p0i(1p0)ni

泊松分布参数 λ \lambda λ的检验

  • ∑ i = 0 c 0 e − λ 0 λ 0 i i ! < 1 − α < ∑ i = 0 c 0 + 1 e − λ 0 λ 0 i i ! \sum_{i=0}^{c_0}\frac{e^{-\lambda_0}\lambda_0^i}{i!}<1-\alpha<\sum_{i=0}^{c_0+1}\frac{e^{-\lambda_0}\lambda_0^i}{i!} i=0c0i!eλ0λ0i<1α<i=0c0+1i!eλ0λ0i

拟合优度检验

理论分布完全已知只取有限个值的情况

  • Z = ∑ ( 理 论 值 − 经 验 值 ) 2 理 论 值 Z=\sum\frac{(理论值-经验值)^2}{理论值} Z=()2
  • 定理:如果原假设 H 0 H_0 H0成立,则在样本大小 n → ∞ n\rightarrow \infty n时, Z Z Z的分布趋向于自由度为 k − 1 k-1 k1 K 2 K^2 K2分布(k为取值个数)

理论分布只含有限个值但不完全已知的情况

  • 定理:在一定的条件下,若原假设 P ( X = a i ) = p i ( θ 1 , ⋯   , θ r ) 有 一 组 值 使 它 成 立 P(X=a_i)=p_i(\theta_1,\cdots,\theta_r)有一组值使它成立 P(X=ai)=pi(θ1,,θr)使,则当样本大小 n → ∞ n\rightarrow\infty n时, Z Z Z的分布趋向于自由度为 k − 1 − r k-1-r k1r K 2 K^2 K2分布(k为取值个数,r为参数个数)

列联表

  • n i j n_{ij} nij为属性 A , B A,B A,B分别处于水平 i , j i,j i,j的个体数
  • 列出表后, Z = ∑ i = 1 a ∑ j = 1 b ( n n i j − n i ⋅ n ⋅ j ) 2 / n ( n i ⋅ n ⋅ j ) Z=\sum_{i=1}^a\sum_{j=1}^b(nn_ij-n_{i·}n_{·j})^2/n(n_{i·}n_{·j}) Z=i=1aj=1b(nnijninj)2/n(ninj),服从 K 2 ( ( a − 1 ) ∗ ( b − 1 ) ) K^2((a-1)*(b-1)) K2((a1)(b1))分布
Python网络爬虫与推荐算法新闻推荐平台:网络爬虫:通过Python实现新浪新闻的爬取,可爬取新闻页面上的标题、文本、图片、视频链接(保留排版) 推荐算法:权重衰减+标签推荐+区域推荐+热点推荐.zip项目工程资源经过严格测试可直接运行成功且功能正常的情况才上传,可轻松复刻,拿到资料包后可轻松复现出一样的项目,本人系统开发经验充足(全领域),有任何使用问题欢迎随时与我联系,我会及时为您解惑,提供帮助。 【资源内容】:包含完整源码+工程文件+说明(如有)等。答辩评审平均分达到96分,放心下载使用!可轻松复现,设计报告也可借鉴此项目,该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的。 【提供帮助】:有任何使用问题欢迎随时与我联系,我会及时解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 下载后请首先打开README文件(如有),项目工程可直接复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值