图论
文章平均质量分 88
bay7447_坤艮
父母本是在世佛,何须千里拜灵山 。
展开
-
图论考前瞄一眼
一些总结图的基本概念一些证明思想方体二分图的分类(奇数个1与偶数个1)二分图无奇圈(证明二分图的分类,距离到一点为偶数的集合与为奇数的集合,证明集合内部不相邻)证明图连通或两点之间连通,通常反证法找最长轨道,度数大于1,则该边另一点必在轨道上,可形成圈一些算法DijsktraDijsktraDijsktra算法:输入一点u0u_0u0,求出该点到其他顶点的最短路径d(u):d(u):d(u):表示最短距离,l(u):l(u):l(u):表示该路径的uuu的前继结点,S:S:S原创 2022-01-16 16:45:56 · 819 阅读 · 0 评论 -
图论-10
10-图矩阵与图空间注:所写主要参考为许胤龙《图论导引》,因觉得此书所写不合理,故附参考张先迪《图论及其应用》线性空间简介线性空间:给定数域FFF,非空集合VVV,VVV中元素通常称为向量在VVV中定义了一种二元运算,称为向量加法,记作+++,即对任意α,β\alpha,\betaα,β,都按某一法则对应于VVV内惟一确定的一个向量α+β\alpha+\betaα+β,称为α\alphaα与β\betaβ的和在FFF与VVV的元素间定义了一种运算,称为数量乘法,即对VVV中任意元素α\alp.原创 2021-12-29 19:27:24 · 553 阅读 · 0 评论 -
图论-09
09-网络流理论注:所写主要参考为许胤龙《图论导引》,因觉得此书所写不合理,故附参考张先迪《图论及其应用》网络与流函数网络:一个网络可以定义为一个四元组N=(D,s,t,c)N=(D,s,t,c)N=(D,s,t,c),其中DDD是一个若连通的有向图s,t∈V(D)s,t\in V(D)s,t∈V(D),分别称为源与汇c:E(D)→Rc:E(D)\rightarrow Rc:E(D)→R为容量函数,任给e∈E(D),c(e)≥0e\in E(D),c(e)\geq0e∈E(D),c(e)≥.原创 2021-12-29 19:26:26 · 327 阅读 · 0 评论 -
图论-08
08-有向图注:所写主要参考为许胤龙《图论导引》,因觉得此书所写不合理,故附参考张先迪《图论及其应用》有向图底图:对于一个有向图DDD,忽略每条有向边的方向得到的无向图GGG称为DDD的底图定向图:对于一个无向图GGG,给每条边指定一个方向,得到的有向图DDD称为GGG的定向图外/内邻顶点:若DDD中存在有向边(u,v)(u,v)(u,v),则称vvv是uuu的外邻顶点,称uuu是vvv的内邻顶点外/内邻集:对于顶点u∈V(D)u\in V(D)u∈V(D),分别用ND+(u)N_D^+(u.原创 2021-12-27 14:22:57 · 702 阅读 · 0 评论 -
图论-07
07-图的着色注:所写主要参考为许胤龙《图论导引》,因觉得此书所写不合理,故附参考张先迪《图论及其应用》顶点着色k-顶点着色:把kkk个颜色分配给图GGG的顶点,每个顶点分配一种颜色,称为k-顶点着色正常k-顶点着色:若相邻顶点颜色不同,则为正常k-顶点着色,此时称GGG为可k-顶点着色的。顶点色数:使图G可正常顶点着色的最少颜色数k,为图G的顶点色数,简称色数,记为X(G)X(G)X(G)正常k-顶点着色是顶点集合的一个划分。X(G)=2X(G) = 2X(G)=2 当且仅当它是有边二.原创 2021-12-26 16:01:29 · 996 阅读 · 0 评论 -
图论-06
06-Euler图与Hamilton图注:所写主要参考为许胤龙《图论导引》,因觉得此书所写不合理,故附参考张先迪《图论及其应用》Euler图Euler迹:经过图GGG的每条边的行迹(边不重复)称为Euler迹Euler回路:经过图GGG每条边的闭行迹称为Euler回路Euler图:如果图GGG含有Euler回路,则称GGG为Euler图定理:设GGG是连通图,则下面三个命题等价GGG是Euler图GGG的每个顶点的度数都是偶数GGG可以表示成无公共边的圈之并推论:连通图GGG有E.原创 2021-12-26 10:47:54 · 449 阅读 · 0 评论 -
图论-05
05-匹配注:所写主要参考为许胤龙《图论导引》,因觉得此书所写不合理,故附参考张先迪《图论及其应用》两个例子某公司有员工x1,x2,⋯ ,xmx_1,x_2,\cdots,x_mx1,x2,⋯,xm,有一些工作y1,y2,⋯ ,yny_1,y_2,\cdots,y_ny1,y2,⋯,yn需要分配给这些员工。每个人只做一份工作,每一份工作也只能一个人来做。给出一个合理的工作分配方案设有一个残缺的m∗nm*nm∗n键盘,我们用1∗21*21∗2的多米诺骨牌来覆盖,要求:骨牌不能覆盖残缺位.原创 2021-12-25 14:44:58 · 325 阅读 · 0 评论 -
图论-04
04-平面图 注:所写主要参考为许胤龙《图论导引》,因觉得此书所写不合理,故附参考张先迪《图论及其应用》平面图及平面嵌入平面图:如果一个图可以画在平面上,使得除了端点外,它的任意两条边没有交点,则称这个图为可嵌入平面的,简称平面图平面嵌入:平面图GGG的一种画法称为GGG的一个平面嵌入平图:平面嵌入的别称上述概念均可推广到其他曲面,有可嵌入曲面S的,S嵌入的概念面:平图GGG把平面划分为若干连通的闭区域,这些闭区域称为GGG的面外部面:每个平面图恰有一个的无界的面.原创 2021-12-23 14:34:29 · 790 阅读 · 0 评论 -
图论-01
01-图的基本概念 注:所写主要参考为许胤龙《图论导引》,因觉得此书所写不合理,故附参考张先迪《图论及其应用》图的定义一个无向图G是一个有序组G=(V(G),E(G))G=(V(G),E(G))G=(V(G),E(G)),V(G)V(G)V(G)是顶点集合,E(G)E(G)E(G)是边集合阶:图的顶点个数,即∣V(G)∣\vert V(G)\vert∣V(G)∣,记为v(G)v(G)v(G)相邻:一条边的两个顶点相邻,有公共顶点的两边相邻重数:连接两个相同顶点的边的条数重边:重数大于1的边.原创 2021-12-21 22:34:50 · 1241 阅读 · 1 评论 -
图论-02
02-树 注:所写主要参考为许胤龙《图论导引》,因觉得此书所写不合理,故附参考张先迪《图论及其应用》树的基本概念树:连通的无圈图,度数为1的顶点称为树叶,度数大于1的顶点称为分支点,边称为树枝森林:一个无圈图,树也是森林平凡树:平凡图称为平凡树定理:设无向图G=(V,E)G=(V,E)G=(V,E)是一个(n,m)(n,m)(n,m)图,即顶点数为n,边数为m,则下列命题等价GGG是树GGG的任意两顶点间有且仅有一条轨道GGG是连通的,且m=n−1m=n-1m=n−1GGG无圈,且.原创 2021-12-21 22:32:50 · 580 阅读 · 0 评论 -
图论-03
03-图的连通性 注:所写主要参考为许胤龙《图论导引》,因觉得此书所写不合理,故附参考张先迪《图论及其应用》顶连通度uv-割集:给定G=(V,E)G=(V,E)G=(V,E)中一对不相邻的顶点u,v∈V(G),u≠vu,v\in V(G),u\neq vu,v∈V(G),u=v。若S⊆V(G)−u,vS\subseteq V(G)-{u,v}S⊆V(G)−u,v使得uuu与vvv在G−SG-SG−S中不连通,则称S是一个uv-顶割集,简称为uv-割集,含顶点最少的uv-割集称为最小uv-割集.原创 2021-12-21 22:24:53 · 628 阅读 · 0 评论